EEG Alpha as a Predictor of Response to an SSRI Antidepressant

James P. Sedore1, Craig E. Tenke1,3, Jonathan W. Stewart2,3, Patrick J. McGrath2,3, Gerard E. Bruder1,3

1 Department of Biopsychology and 2 Depression Evaluation Service, New York State Psychiatric Institute, New York, NY; 3 Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY

Abstract

The present study examined pretreatment differences in regional hemispheric activity among depressed patients who did or did not respond to an SSRI antidepressant and healthy controls. Resting EEG (eyes open and closed; nose reference) was recorded from 28 electrodes (plus eye channels) in 18 depressed patients (13 male, 20-56 years old; 12 treatment responders) when off medication and 18 healthy controls (13 male; 19-56 years old). Clinical response to 12 weeks of fluoxetine treatment was assessed using the CGI-I. Treatment responders had significantly greater alpha power (less activity) when compared to either nonresponders or controls. There was also an overall group by hemisphere interaction, with nonresponders showing greater activity (less alpha) over right than left hemisphere, whereas responders tended to have the opposite asymmetry. The opposite direction of alpha asymmetry in treatment responders and nonresponders was particularly striking over parietal and occipital sites. Using median values for controls as the cut-off, both alpha asymmetry and amplitude at posterior sites were significantly predictive of clinical response to fluoxetine. The findings replicate our prior study (Bruder et al., 2001) and suggest the potential value of EEG measures of regional hemispheric asymmetry as predictors of therapeutic response to an SSRI antidepressant.

Introduction

In our prior study (Bruder et al., 2001), depressed patients who responded to the SSRI antidepressant fluoxetine (Prozac) differed from treatment nonresponders in pretreatment EEG measures of alpha asymmetry. The present study examined the value of EEG alpha asymmetry and amplitude for predicting clinical response to treatment with fluoxetine.

Methods

Subjects: N = 18 clinically depressed outpatients were divided into two groups (n = 12 Responders and n = 6 Nonresponders) on basis of their treatment outcome after 12 weeks of fluoxetine treatment, as assessed by an independent evaluator using The Clinical Global Impression Improvement Scale (CGI-I). Patients were free of medication for a minimum of one week before the EEG was recorded. A sample of 18 healthy controls was also tested.

Recordings: Resting 30-channel EEG from four 2-minute time periods (order of eyes open/closed counterbalanced as OCCO or COOC across subjects), referenced to nose tip (Grass, 10k gain; 0.1-30Hz band pass; recording using NeuroScan at 200 samples/sec); vertical and horizontal EEG recorded differentially.

Signal Processing: Data were segmented into 1.28 s epochs (50% overlap; yielding a frequency resolution of 0.78 Hz; artifactual data eliminated from epochs due to visual guidance (semi-automated procedure).

Spectral Analysis: Hannings window (50%) applied to each EEG epoch; mean Power Spectra computed across epochs for each condition (i.e., eyes open/closed). Alpha power was averaged across 7.8Hz-12.5Hz after verifying the appropriateness of this frequency band for alpha activity in both groups (Responder/Nonresponder) and conditions (eyes open/closed).

Statistics: Effects were evaluated using an ANOVA with Group (Responder/Nonresponder) as a between-subjects factor, and Hemisphere (right/left) and/or electrode Site as within-subjects factors (Greenhouse-Geisser correction where appropriate).

Funding Source: National Institutes of Health Grant MH36295.

Results

1) Alpha power differed significantly across groups (group F(1,16)=3.52 p<.01). There was also an overall group by hemisphere interaction between responders, nonresponders, and controls (group F(3,30)=5.57 p<.01).

2) Responders had greater overall alpha power compared to controls (Fig. 2, group F(1,28)=7.48 p<.01) and nonresponders (group F(1,16)=4.76 p<.02). There was no significant difference between controls and responders.

3) There was a group by hemisphere interaction, with nonresponders showing overall greater activity (less alpha) over right than left hemisphere while responders did not (Fig. 3, F(1,16)=8.95 p<.01).

4) At posterior sites (where alpha is well-defined) responders showed less activity (greater alpha) over right than left hemisphere, whereas nonresponders showed the opposite asymmetry (Fig. 4). Simple effects for parietal: Group Hemisphere F(1,16)=5.57 p<.01; Occipital: Group Hemisphere F(1,16)=13.16 p<.01.

5) All groups showed greater activity (less alpha) over right than left frontal sites (Fig. 5, Simple effects for Frontal: Hemisphere F(1,13)=12.84 p<.01; no group interaction).

Conclusion

1) Patients who responded to fluoxetine showed greater alpha power when compared to controls and nonresponders.

2) As in our prior study (Bruder et al., 2001), nonresponders showed an alpha asymmetry indicative of overall greater activity over the right than left hemisphere, whereas responders tended to show the opposite asymmetry particularly at posterior sites.

3) When patients were classified according to control mediators for alpha amplitude and asymmetry, both measures of posterior alpha were predictive of clinical response.

Acknowledgments

Special thanks to Jürgen Kayser for software development as well as helpful comments.