Brain Responses to Novel Sounds in Depression: An ERP Study

Christopher J. Kroppmann1, Craig E. Tenke1,2, Jürgen Kayser1,3, James P. Sedoruk1, Carlyle B. Griggs1, Jonathan W. Stewart1,2, Gerard E. Bruder1,3

1 Department of Biopsychology and 2 Depression Evaluation Service, New York State Psychiatric Institute, New York, NY; 3 Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY

Abstract

Although reduced P3 amplitude has frequently been reported for clinically-depressed individuals, little is known how depression affects subcomponents of the late positive complex. ERPs (30-channel; nose reference) were recorded from 25 depressed, treatment-naive patients and 25 healthy controls during a novel oddball task (Favell et al., 2002). All subjects were presented with frequent tones (90%), rare tones (10%) during the 220-365 ms time window (Favell et al., 2002; P1=400-450 ms). Patients performed as accurately as possible to target tones only. Response hand was counterbalanced across blocks. All groups performed well (hits vs. false alarms: controls 99.5% vs. 1.5%, patients 98.5% vs. 2.6%), yielding comparable ERP components: N1, P2/N2 and early P3 (325 ms peak latency; 220-365 ms integrated time window amplitude) and late P3 (490 ms; 400-650 ms). Early P3 was most prominent for novel stimuli (novelty P3) and had a more frontal topography than late P3, which showed a parietal topography for targets consistent with classic P3b. Although both positive potentials were reduced in depressed patients, the reduction obtained statistical significance only for early P3. We used a simple effect analysis to examine whether the early P3 reduction was related to group or stimulus type. A posteriori analysis confirmed that the group reduction was present only for novel stimuli. Data are compatible with the hypothesis that clinical depression is associated with a reduced frontalcentrally originated response to novel stimuli, likely reflecting a deficit in orienting and starting.

Introduction

There have been conflicting findings as to whether or not depressed patients show reductions in the cognitive P3 event-related potential (Roth et al., 1986). One possible reason is that the reduction may occur in only a subcomponent of P3. The classical P3b subcomponent is often preceded by a subcomponent with a more frontaltopographic, referred to as P3a or novelty P3, which is thought to reflect attentional or orienting processes involving frontal cortex (Knight, 1984). Based on our findings in standard oddball paradigms (Bruder et al., 2002), we hypothesized that depressed patients in a 3-stimulus oddball task (frequent nontarget tones, infrequent target tones, and infrequent novel sounds) would show reduced amplitude of the novelty P3.

Novelty Oddball Task

- An auditory novelty oddball task (Friedman et al., 1993) was implemented on a Neuroscan STIM system. Each subject was presented with 8 blocks of 50 trials consisting of two 300 ms tones presented in an interstimulus interval (ISI=1800 ms). One nontarget tone of 350 Hz was presented to the subject (frequency =50%) while the other was an infrequent 500 Hz target tone (p=12). Novel sounds (i.e. animal sounds, musical instruments, environmental sounds) possessing durations of 10400 ms, were infrequently (p=12) intermixed with the frequent tones and infrequent target tones. All stimuli were presented binaurally over earphones at 75 db SPL.
- Subjects were instructed to focus their eyes on a fixation cross displayed on a computer monitor and to respond with a button press as quickly as possible when, and only when, they hear the infrequent target tone.
- Response hand (right or left) was counterbalanced across blocks.

ERP Recording and Data Analysis

- EEG Recording: EEGs were recorded using Grass Neurodata amplifiers (5K, 0.01-30 Hz) from 4 midline (Fz, Cz, Pz, Oz) and 26 homologous scalp placements from both hemispheres (Fp1/2, F3/4, F7/8, FT9/10, FC5/6, C3/4, T7/8, TP9/10, CP5/6, P3/4, P7/8, P9/10, O1/2) using a reference-free approach and an electrode cap with an Fpz ground (impedances maintained at 5 kΩ or less). Bipolar recordings of horizontal and vertical eye movements (violate that facial leads with impedances of at or below 5 kΩ) were also recorded for blink correction using spatial SVD.
- Artifact rejection was performed based on a reference-free approach suggested by Kayser and Teder-Puike (Frontal Session 1 1993). Trials containing artifacts in more than eight channels were rejected. Artifact detection and electrode replacement was verified by visual inspection.
- Signal Processing Artifact free data was averaged for correct targets, novels, and nontargets. P3 amplitudes were quantified as mean amplitudes across early (220-365 ms) and late (400-650 ms) windows at 12 electrode sites (four medial pairs: F3A, C3A, P3A, O3A; four lateral pairs: Fz, Cz, Pz, Oz). The early P3 (P3a) component had a more frontocentral topography than the late P3 (P3b) component and involves sources in midfrontal and parietotemporal regions.

Results

- Both groups performed well (hits vs. false alarms: controls 99.5% vs. 1.5%; patients 98.5% vs. 2.6%), and responded with comparable RTs (controls: 421±69 ms; patients: 442±76 ms) yielding comparable ERP components: N1, P2/N2 and early P3 (225 ms peak latency; 220-365 ms). Early P3 was not significantly reduced.
- Early P3 was most prominent for rare target stimuli. The novelty P3 had a more frontal topography than target P3 in either time window, which showed a parietal topography consistent with classic P3b.
- Both novelty P3 and early target P3 were significantly reduced in depressed patients while late target P3 was not significantly reduced.

Conclusions

- Depressed patients showed a significant reduction in amplitude of an early P3 subcomponent to both novel stimuli and rare target stimuli when compared to healthy control subjects.
- There was no reduction in the late P3 subcomponent to target or novel stimuli in depressed patients.
- The early P3 (P3a) component had a more frontocentrolateral topography than the late P3 (P3b) component and involves sources in midfrontal and parietotemporal regions.

References


Figure 1. ERP Recording and Data Analysis