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Abstract

Objective: To determine how specific methodological choices affect “data-driven” simplifications of event-related potentials (ERPs)

using principal components analysis (PCA). The usefulness of the extracted component measures can be evaluated by knowledge about the

variance distribution of ERPs, which are characterized by the removal of baseline activity. The variance should be small before and at

stimulus onset (across and within cases), but large near the end of the recording epoch and at ERP component peaks. These characteristics are

preserved with a covariance matrix, but lost with a correlation matrix, which assigns equal weights to each sample point, yielding the

possibility that small but systematic variations may form a factor.

Methods: Varimax-rotated PCAs were performed on simulated and real ERPs, systematically varying extraction criteria (number of

factors) and method (correlation/covariance matrix, using unstandardized/standardized loadings before rotation).

Results: Conservative extraction criteria changed the morphology of some components considerably, which had severe implications for

inferential statistics. Solutions converged and stabilized with more liberal criteria. Interpretability (more distinctive component waveforms

with narrow and unambiguous loading peaks) and statistical conclusions (greater effect stability across extraction criteria) were best for

unstandardized covariance-based solutions. In contrast, all standardized covariance- and correlation-based solutions included “high-

variance” factors during the baseline, confirming findings for simulated data.

Conclusions: Unrestricted, unstandardized covariance-based PCA solutions optimize ERP component identification and measurement.

q 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

1.1. Conceptualizations of ERP components

Event-related potentials (ERPs) reflect activity patterns

of neuronal generators, such as the modality-specific,

sequential activation in afferent and central pathways

evoked by transient sensory stimuli, which sum and

volume conduct to scalp electrodes (e.g., Rose and

Woosley, 1949). The component structure of ERPs

incorporates the transfer properties of these neuronal

processes in their time course and topography (e.g., Kraut

et al., 1985; Schroeder et al., 1991; Tenke et al., 1993),

although much of this information is masked in the

awake, behaving organism. Thus, ERP components are

classically conceived as an electrophysiologic correlate of

the underlying neuronal generators associated with

information processes.

The linkage between ERP waveforms and the under-

lying biophysics is less obvious in complex cognitive

paradigms, which typically focus on differences between

overlapping ERP components (e.g., Friedman, 1990;

Kutas and Hillyard, 1980; Näätänen and Picton, 1987;

Simson et al., 1976; Squires et al., 1975; Sutton et al.,

1965). Although ERP studies appear to share a common

nomenclature, based on polarity, sequence or timing, and

attributed function (e.g., N1/N100, P3/P300), a prominent

peak or trough in a waveform may not be informative

or important in the context of a complete topography or
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a particular paradigm. For instance, a peak may invert in

polarity across the scalp topography, or appear entirely

different when converted to a different reference (see

Discussion in Kayser et al., 2003, for an example and

implications; cf. also Dien, 1998b).

A frequently neglected issue in ERP studies is the

difference between a conceptual (theoretical) and a

technical (observational) definition of an ERP component

(see, e.g., Donchin et al., 1977, 1978, 1997; Fabiani et al.,

2000; Näätänen and Picton, 1987; van Boxtel, 1998).

Cognitive ERP research has extended the traditional

conceptualization of an ERP component, being a construct

of the underlying neuronal generators, by operationally

defining endogenous ERP components as condition-related

differences of distinct ERP deflections (e.g., MMN, N2b,

P3b, Novelty P3), which may markedly differ between

various populations (e.g., age, gender, handedness, clinical

diagnosis). Paradoxically, all practical estimates of these

generic ERP components, ranging from simple baseline-

to-peak measures to more sophisticated waveform

decomposition methods, are formally unrelated to the

neuronal origin of the ERP. Instead, they are based on an

evaluation of the temporal and/or spatial structure of the

ERP signal and its statistical properties, which is not a

trivial problem considering the richness of the data source

with its high temporal resolution in the millisecond range

(e.g., Chapman and McCrary, 1995; Picton et al., 2000).

The analysis and interpretation of ERPs requires an

effective method for measuring components of interest;

however, the significance and heuristic value of any

component measure must be judged by insights gained

about anatomical, physiological, and/or cognitive infor-

mation processes.

Recent technological advancements have made poss-

ible dense electrode arrays with a spatial resolution of

128 or more channels, calling for an overhaul of

the existing 10–20 system for electrode placements

(Oostenveld and Praamstra, 2001; Pivik et al., 1993),

and have therefore further increased the volume of data

recorded during a single experiment. Given the goal of

differentiating the impact of experimental manipulations,

the most direct, if simplistic, approaches to quantify this

information have continued to measure the “obvious”

characteristics of ERPs, namely the amplitude and

latency of waveform peaks and troughs, even in the

absence of a theoretical rationale that these conspicuous

deflections are always meaningful (e.g., see Chapman

and McCrary, 1995; Donchin and Heffley, 1978; Picton

et al., 2000). However, as convincingly exemplified by

Donchin and Heffley (1978), the simplicity of traditional

ERP peak and area measures is deceiving, as these

measures are subject to experimenter bias in specifying

peaks in noisy waveforms (a problem not removed by

using a computer algorithm), or in determining area

integration limits for deflections that invert and shift

across scalp recording locations.

1.2. Principal components analysis of ERP data

To overcome the limitations of traditional peak and area

measures, principal components analysis (PCA) has been

advanced as a heuristic tool to determine “data-driven” ERP

component measures (e.g., Donchin 1966; Donchin and

Heffley, 1978; Glaser and Ruchkin, 1976; Möcks, 1988a,b),

and since has widely been used as an effective linear

reduction method for multivariate ERP data (e.g., Chapman

and McCrary, 1995; Dien, 1998a; Duffy et al., 1992; Picton

et al., 2000; van Boxtel, 1998). In this approach, ERP

waveforms are conceptualized as an ordered sequence of

recorded scalp potentials, typically using either time

(temporal) or topography (spatial) as the ordering domain.1

The basic assumption of a temporal PCA is that a collection

of ERP waveforms (i.e., the cases, their number being

determined by multiplying participants, recording locations,

and experimental conditions), each consisting of a finite

number of surface potentials recorded at discrete time points

(i.e., the variables, their number being determined by the

sampling rate and the length of the recording epoch), can be

decomposed into a linear combination of principal com-

ponent coefficients (i.e., the factor loadings) and associated

weights (i.e., the factor scores). The component coefficients

represent, with respect to the cases, invariant loading patterns

across the ordered variables (i.e., time points), often referred

to as ‘component waveforms’ (Chapman and McCrary,

1995), which are orthogonal to each other (for a brief

description of principle axis rotation, e.g. Hunt, 1985; Rösler

and Manzey, 1981; for computational details, see Glaser and

Ruchkin, 1976; Harman, 1967; Appendix). The component

or factor scores represent the relative contribution or weight

of each loading pattern for each case (i.e., each ERP), and

may therefore subsequently be used to compare the different

ERPs for a given loading pattern, for instance, by employing

an analysis of variance (ANOVA) reflecting the study design.

ERP waveforms may be linearly decomposed in an

infinite number of ways (e.g., Glaser and Ruchkin, 1976).

An initial PCA factor extraction likewise provides only one

non-unique solution set, unless a single component fully

describes the data (e.g., van Boxtel, 1998). The maximum

number of PCA components that can be extracted from a

cases-by-variables data matrix is determined by the smaller

of the number of rows (cases) or columns (variables),

although fewer components may be sufficient to fully

account for the variance of a linearly dependent matrix. For

a temporal PCA, the number of variables depends on

1 It should be noted that the PCA algorithm is blind to any underlying

data organization (i.e., temporal, spatial, spectral, etc.), and identifies

systematics solely by intercorrelations of data variables. Randomly

shuffling the variable sequence will not change the PCA solution, but

will make it very difficult for a researcher to interpret the component

structure, unless the original order is restored. It is the a priori ordered,

sequential nature of ERPs (temporal and spatial) that distinguishes these

data sets from other unstructured data sets to which PCA is commonly

applied.
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the duration of the recording epoch considered for analysis

and the sampling rate, whereas the number of observations

(cases) equals the number of ERP waveforms submitted

(i.e., subjects, conditions, and scalp sites). To obtain a more

stable PCA solution, it is generally suggested that the

number of observations should exceed the number of

variables (e.g., Chapman and McCrary, 1995), usually

several times more, which may require adjusting epoch

length, sampling rate, or both. However, this general rule

has been challenged by the findings of Guadagnoli and

Velicer (1988), who demonstrated that absolute sample size,

magnitude of component loadings, and to a lesser degree the

number of variables defining a component were by far more

important to attain a stable solution.

Apart from selecting input variables (e.g., epoch length,

sample rate, trials used for averaging ERPs), any application

of PCA to ERP data requires a choice between several

specific methodological alternatives, including the type of

association matrix, whether (and how) factors are rotated,

and the criterion for the number of components to be

extracted (e.g., Chapman and McCrary, 1995; Donchin and

Heffley, 1978; Picton et al., 2000). Frequently, the raw data

matrix is initially transformed into the correlation matrix

(i.e., the standardized variance–covariance matrix), which

has the advantage that all variables have the same variance

and that the extracted factors are therefore invariant under

scaling of the original variables (cf. Chapman and McCrary,

1995; Donchin and Heffley, 1978). However, it has been

argued that when all variables are measured in the same

units, which is usually the case for surface potentials

calibrated in microvolts, using either a cross-products or a

covariance matrix is preferable over using a correlation

matrix (e.g., Donchin and Heffley, 1978). Moreover, there is

no a priori reason to assume that the standard deviations of

the input variables are the same (cf. van Boxtel, 1998), and,

as argued below, exactly the opposite may be expected for

baseline-corrected ERP data. The main advantages of a

cross-products matrix are that PCA components will (1)

likely be related to large ERP deflections, and (2) factor

loadings and scores can be directly interpreted with respect

to the original data, as the sign of the factor scores

reflects the polarity of the underlying ERP component (e.g.,

van Boxtel, 1998). These two advantages are also valid for a

covariance-based PCA, although for slightly different

reasons, as factors reflect the ERP variance around the

grand mean waveform, which is removed by this procedure.

The extracted factors should still closely relate to prominent

ERP deflections, because ERP variance is likely centered

around or in close temporal and/or spatial proximity of these

peaks, and the polarity of the associated ERP variance

relative to the grand mean can be inferred from the sign of

the component scores. As stressed by van Boxtel (1998, p.

92), a covariance-based PCA extracts components only “if

there is variation across electrodes, conditions, and subjects,

and that is exactly what researchers are looking for”. Still, it

is widely believed that there is little, if any, difference

between PCA solutions based on the covariance or

correlation matrix when applied to typical ERP data (e.g.,

van Boxtel, 1998), and any advantages of the covariance

matrix, such as the close relation to the original metric, can

be easily resolved for the correlation matrix by multiplying

each loading value with the standard deviation of its input

variable (e.g., Chapman and McCrary, 1995). For these

reasons, Chapman and McCrary (1995, p. 294) “can find no

reason for any vehement preferences”, and van Boxtel

(1998) suggests that practical considerations, such as the

availability of an extraction procedure in a statistical

package, may be used as a guide to choose between these

alternatives. Unfortunately, there is considerable confusion

about how extraction procedures are implemented and used

in different statistical software packages, particularly in

combination with other methodological choices. For

instance, when a covariance matrix is factored, the loadings

may by default be standardized after extraction, that is, each

value of the component waveform is divided by the standard

deviation of the raw variables (across cases).

A rotation is commonly applied after factor extraction

with the goal of obtaining simpler interpretations of the

extracted components (e.g., Chapman and McCrary, 1995;

van Boxtel, 1998; Picton et al., 2000; but see Rösler and

Manzey, 1981, for caveats and arguments against factor

rotation). If a component waveform (i.e., the factor loadings

vector) consists of multiple or significant secondary loading

peaks, it can be very difficult or impossible to interpret such

a component. Frequently, a Varimax criterion (Kaiser,

1958) is applied to the initial PCA solution to achieve

simple structure (Thurstone, 1947), which maximizes the

loadings variance for the components retained for the

rotation procedure (e.g., Bortz, 1993; Chapman and

McCrary, 1995). Apart from minimizing component

overlap, the Varimax rotation also maintains orthogonality

of component scores (i.e., independence between com-

ponents), which is a significant advantage with respect to

inferential statistics usually performed on the factor scores.

As the probability of Type I errors increases with the

number of dependent variables (i.e., extracted factors)

considered for statistical analysis, the orthogonality of the

Varimax solution counteracts this undesired effect. Covari-

ance-based, Varimax-rotated component waveforms are

typically characterized by unique triangle-shaped, positive

factor loadings that are (1) clustered in a narrow time range

and (2) lack inverse (negative) or significant secondary

loadings at different latencies. In other words, because

maximum weight is assigned to the time point that coincides

with the factor loadings’ peak, while neighboring time

points have smaller weights, and all other time points of the

recording epoch have zero weights, Varimax-rotated PCA

components can be conceived as a measure of weighted

time window amplitude (Kayser et al., 2000a, 2001).

However, as pointed out by Chapman and McCrary

(1995), this is not a characteristic of the Varimax procedure,

which would identify unique variance with multiple
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component peaks (e.g., if the epoch includes two successive

stimulus presentations, a common N1 factor with two peaks

is likely extracted), but rather an inherent feature of the

variance distribution in ERPs.

Other rotation procedures, particularly oblique rotations,

are less commonly used, although they may achieve a

greater degree of simple structure (Chapman and McCrary,

1995; van Boxtel, 1998). Dien (1998a), arguing that the

orthogonality criterion of the Varimax procedure (factors

must be uncorrelated) may result in distortions of the

component waveforms and may also be incompatible with

the underlying brain processes (i.e., different ERP com-

ponents and the activity of their underlying generators may

be correlated), has proposed the use of Promax (Hendrick-

son and White, 1964) as an alternative rotation procedure.

Promax loosens the strict orthogonality criterion of Varimax

and allows multiple factors to share variance. However, the

advantage of Promax and any oblique rotation method is at

the same time a disadvantage, as the analyzed components

are no longer independent.

Fava and Velicer (1992, 1996) have warned that a bias

towards under- or overextraction of the true underlying

number of components may produce degraded and unstable

factors and thereby yield inaccurate solutions; overextrac-

tion, however, was generally found to be a less serious

problem (Wood et al., 1996). A number of general

guidelines have been proposed for the number of com-

ponents to extract and interpret (e.g., Everett, 1983), among

them the scree test (Cattell, 1966), the criterion proposed by

Kaiser (1960) to use only components that explain at least

the variance equal to the average variance of the original

variables (i.e., components with Eigenvalues larger than one

when a correlation matrix is factored; e.g., Chapman and

McCrary, 1995; van Boxtel, 1998), or parallel analysis

(Horn, 1965) to estimate the degree of random noise

inherent in the data (Bortz, 1993; Zwick and Velicer, 1986;

see Dien, 1998a; Beauducel et al., 2000, for examples of

parallel analysis in the context of ERP data). Instead of

using rather arbitrary criteria to extract, retain and interpret

PCA components derived from ERP data, we and others

(e.g., Donchin et al., 1997; Kayser et al., 1997, 1998, 1999,

2000a, 2001; Spencer et al., 1999, 2001) reasoned that ERP

expertise and a priori knowledge about the paradigm should

be used as a guide to focus on components of interests.

These research groups adopted a strategy that extracts as

many factors as needed to account for most or even all of the

data variance, but interpretation and statistical analysis is

restricted to factors that either directly vary as a function of

the experimental manipulation, for instance, distinguishing

a novelty P3 from a classical P300 (Spencer et al., 1999), or

that can unambiguously be related to known ERP

components evident in the averaged waveforms (e.g.,

Kayser et al., 1997, 1998, 1999, 2000a, 2001). Based on

similar considerations, Dien et al. (2003) related parametric

measures of expectancy and meaningfulness to factors

extracted in a semantic comprehension task. Fabiani et al.

(1987, p. 28) have also emphasized that determining the

number of components to rotate, and deciding how many to

interpret, are two separate choices, and strongly encouraged

investigators to closely examine “the time course of the

component, its scalp distribution, and its response to

experimental manipulations” to safeguard against com-

ponent overinterpretation and misindentification.

1.3. Theoretical rationale

It is unclear which of the general guidelines and concerns

are of relevance to ERP component definition using PCA.

Few efforts have been made to specifically develop or

validate the empirical relevance of such recommendations

to the problem of identifying and defining meaningful,

interpretable ERP components (Chapman and McCrary,

1995; Dien, 1998a; Glaser and Ruchkin, 1976; Picton et al.,

2000). Specifically, it is not obvious that methods suited to

psychometric data are equally suited to summarize the

topographic organization of intercorrelated time series data

comprising ERPs. There may be useful, important and

empirically verifiable applications of PCA which are

irrelevant or inappropriate in other contexts. Similar

methods have been used to identify and remove high-

variance components from the data, for example, eliminat-

ing EEG artifacts related to blinks (Berg and Scherg, 1994;

Neurosoft, 2001).

The usefulness of the extracted PCA factors can be

evaluated by specific knowledge about the variance

distribution of ERPs, which are typically characterized by

the removal of baseline activity. The variance should be

small for sample points before and shortly after stimulus

onset, both across cases (i.e., for any particular sample point

across waveforms) and within cases (i.e., across sample

points for each waveform). In contrast, the variance should

be large near the end of the recording epoch, which reflects

the autocorrelation of EEG time series data. An analogy for

this property is the movement of a swinging rope that has

been grasped in one hand. The movements of the rope are

constrained by the grasping hand, comparable to the

ongoing EEG activity constrained by the baseline. Aside

from the baseline, signal variance should be larger at ERP

component peaks (global field power; e.g., Lehmann and

Skrandies, 1980). Furthermore, ERP component amplitudes

are expected to vary as a function of the experimental

manipulation and/or between different subjects. Whereas

the factor loadings of a PCA based on the covariance matrix

preserve this information, it is lost with a correlation matrix

that assigns equal weights to each sample point, yielding the

possibility that small but systematic variations may form a

factor. Such small and rather uninformative systematic

variations are likely to occur during the baseline period, or

shortly after its end, which typically coincides with stimulus

onset. For instance, if the ERPs comprise a small CNV or

anticipatory drift, the baseline correction (i.e., subtracting

the mean of all sample points within the baseline interval
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from the entire waveform) will force the drift to intersect

with the baseline at a fixed sample point—exactly at half the

duration of the baseline period in case of a linear drift. Other

small but systematic ERP variations may also occur during

the recording epoch, for example, originating from

particular recording characteristics such as digitization

mode, filter settings, ‘random’ digitizer noise, etc. Using a

correlation matrix for factor extraction will exaggerate

contributions of negligible amplitude, and may therefore

obscure the underlying ERP component structure, which the

set of extracted factors is intended to reflect.

We evaluated these considerations with simulated and

real ERP data by comparing the PCA solutions resulting

from either a covariance or a correlation association matrix.

Factor extraction was followed by Varimax rotation to

achieve simple structure by means of minimizing the

number of time points with high loadings on a factor,

thereby enhancing the interpretability of the extracted

factors, and at the same time avoiding the interpretational

uncertainties of correlated components. As some statistical

packages apply a standardization of factor loadings by

default (e.g., the SPSS procedure MANOVA can be used to

perform a covariance-based PCA; SPSS, 1988), effectively

scaling (normalizing) PCA components before rotation, this

specific extraction/rotation procedure was also included in

the comparison of real ERP data.2 Furthermore, we

systematically varied the number of components to be

extracted, ranging from the maximum limitation of one to

an unrestricted solution (i.e., number of input variables), to

address the potential risks of factor over- or underextraction

(e.g., Everett, 1983; Fava and Velicer, 1992; 1996; Wood

et al., 1996) for real ERP data, and determine the optimal

number of factors to be retained before rotation.

2. Methods

2.1. Simulated ERP data

Our theoretical considerations prompted us to construct

artificial data sets that would clearly distinguish the

operational properties of a covariance- versus correlation-

based PCA. An invariant, pseudo-ERP waveform template

(128 sample points, 100 samples/s, 200 ms baseline) was

used to generate two simulated data sets for 30 ‘electrode

sites’, applying the EEG montage used in our laboratory

(e.g., Kayser et al., 2000a, 2001), and 20 ‘participants’ (see

Fig. 1). The template consisted of an early negative

‘component’ with an amplitude of 28 mV peaking at 110

ms (sample point 32), and a symmetrical, linear rise and fall

spanning an interval of ^50 ms (^5 sample points), and a

late positive ‘component’ with an amplitude of þ12 mV

peaking at 450 ms (sample point 66), and a symmetrical,

linear rise and fall spanning an interval of ^210 ms (^21

sample points). A ‘topography’ was introduced by scaling

the template for selected sites with a factor of 0.5

(frontopolar sites Fp1, Fp2), 0.8 (frontal coronal plane F7,

F3, Fz, F4, F8), 1.2 (medial–central sites C3, Cz, C4), and

1.0 for the remaining 20 sites. In addition, a constant, low-

voltage offset of 20.01 mV was applied to the pre-stimulus

baseline at every other electrode, spanning an interval of

2200 to 250 ms (first 15 sample points; see inset in

Fig. 1A). The second simulated data set was created by

adding random noise (range ^0.25 mV, uniform distri-

bution) to each sample point in each waveform of the first

simulated data set. As the noise exceeded the amplitude of

the constant offset, the offset was completely obscured in the

second simulated data set (see inset in Fig. 1B), while the

two components of the template and its topography were

preserved.

Each simulated data set was submitted to two temporal

PCAs using either the covariance matrix or the correlation

matrix for factor extraction. BMDP statistical software (4M;

Dixon, 1992) was used for all PCA computations. Variables

consisted of 128 sample points (2200 to 1070 ms),

representing the data matrix columns, while the data matrix

rows consisted of 600 cases stemming from the product of

‘participants’ (20) and ‘electrode sites’ (30). Both covari-

ance- and correlation-based PCA were followed by unrest-

ricted Varimax rotation. Factor loadings of the 4 PCA

solutions were plotted and compared to the original

template.

2.2. Real ERP data

For this systematic comparison, we reanalyzed ERP data

of healthy adults previously collected in our laboratory.

ERPs were from 30 scalp locations using a nose tip

reference with an Fpz ground, and impedances maintained

at 5 kV or less (Kayser et al., 2000a, 2001). EEG gain was

10,000. Data were sampled at 100 Hz with a 0.01–30 Hz

band pass. Recording epochs of 1280 ms (200 ms pre-

stimulus baseline) were extracted off-line and digitally low

pass filtered at 20 Hz.

Visual ERPs of 16 right-handed control participants

(7 men; mean age ¼ 27:3 ^ 8:6 years) were collected during

a hemifield paradigm, in which negative and neutral stimuli

(medical textbook pictures showing face areas before or after

surgical treatment of dermatological disorders) were briefly

exposed for 250 ms to either the left or right visual field.

Stimuli were presented with variable interstimulus intervals

(range 12–18 s, mean ¼ 15 s). Participants were instructed

to attend to the lateralized stimulus presentations while

maintaining fixation, however, no manual response

or any specific cognitive operation was required (for

2 To clearly distinguish this extraction method from the regular use of the

covariance matrix, we will refer to these two procedures as standardized

and unstandardized covariance-based PCA solutions. However, when these

two covariance-based procedures are not directly compared, we have

omitted this additional descriptor to improve readability. In this case, a

covariance-based solution always refers to the unstandardized covariance-

based PCA.
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methodological details, objective and rationale, see Kayser

et al., 2000a). Fig. 2A reveals the ERP topography and

component structure of this paradigm, in which the surface

potentials are characterized by: (1) a central N1 with a peak

latency of about 150 ms; (2) a strongly right-lateralized

P1/N2 complex over inferior-parietal sites (cf. P8 and P10),

peaking at 120 and 220 ms, respectively; and (3) a prominent

mid-parietal P3 peaking at site Pz at 480 ms. Fig. 2B also

shows enhanced P3 amplitude for negative compared with

neutral stimuli, which was greatest over right lateral-parietal

sites.

Auditory ERPs of 32 right-handed volunteers (18 men;

mean age ¼ 35:3 ^ 11:9 years) were collected during tonal

and phonetic oddball tasks. Participants listened to a series

of either two complex tones or two consonant–vowel

syllables (250 ms stimulus duration, fixed interstimulus

interval of 1750 ms), and responded to infrequent target

stimuli (20% probability assigned to one of the two stimuli

in the series) with either a left or right button press (for

methodological details, objective and rationale, see Kayser

et al., 1998, 2001). The ERP component structure generated

by these auditory tasks was fundamentally different

from that found with the visual half-field paradigm.

For target stimuli, the most distinctive components were:

(1) a central N1 peaking at approximately 100 ms; (2) an

N2 peaking around 220 ms, which was characterized by

task-dependent regional hemispheric asymmetries (right-

larger-than-left over frontotemporal sites for tonal stimuli,

left-larger-than-right over parietotemporal sites for phonetic

stimuli); and (3) a mid-parietal P3b peaking between 340

and 420 ms (waveforms are given in Kayser et al., 2001).

By changing the computational instructions3 of BMDP

program 4M (Dixon, 1992), 3 extraction methods and 110

extraction/retention criteria were systematically combined

to perform a total of 330 temporal PCAs on each real data

set. Factors were extracted and Varimax rotated using

either: (1) the covariance matrix and unstandardized factor

loadings; (2) the correlation matrix; or (3) the covariance

matrix and standardized factor loadings. The number of

components to be extracted and retained for rotation was

varied between one (maximum restriction) and 110 (unrest-

ricted solution only limited by the number of input

variables). Data matrix columns (variables) consisted of

110 sample points (2100 to 990 ms), whereas data matrix

rows consisted of 1920 or 3840 cases (visual and auditory

data sets, respectively) resulting from the combination of

participants (16/32), conditions (4/4) and electrode sites

Fig. 1. Grand mean waveforms at 4 ‘electrode sites’ (Fp1, Fz, Cz, Pz) for simulated ERP data (A) without and (B) with random noise (range ^0.25 mV) added

to each sample point. Waveforms were created from an invariant waveform template (128 sample points, 100 samples/s, 200 ms baseline). A ‘topography’ was

introduced by scaling the template for selected sites with a factor of 0.5 (e.g., Fp1), 0.8 (e.g., Fz), 1.2 (e.g., Cz), or 1.0 (e.g., Pz). At every other electrode, a

constant, low-level voltage offset (20.01 mV) was systematically applied to portions of the pre-stimulus baseline (i.e., from 2200 to 250 ms). Insets show

enlargements of the baseline period (2200 to 0 ms) at a different scale, revealing that the constant, low-level baseline offset at ‘sites’ Cz and Pz is present for

the noise-free simulation, but lost for the simulated data set with added noise.

3 The critical BMDP syntax consisted of command variations in the

/FACTOR paragraph of program 4M. Principal components analysis

(METH ¼ PCA) was combined with the request for factoring either the

covariance matrix and to use unstandardized loadings (FORM ¼ COVA),

the correlation matrix (FORM ¼ CORR), or the covariance matrix and to

use standardized loadings (FORM ¼ COVA and LOAD ¼ CORR). The

maximum number of factors obtained was determined by the number

command (NUMB ¼ #). All other BMDP statements were identical,

including the request for Varimax rotation (METH ¼ VMAX) in the

/ROTATE paragraph (Dixon, 1992).
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(30). For all PCA solutions, factors were described by the

time courses of their factor loadings and the topographies of

their factor scores. Hence, all factor loadings and all factor

score topographies were plotted and compared to the

corresponding grand mean waveforms, applying common

ERP knowledge and the theoretical considerations outlined

in the introduction.

3. Results and discussion

3.1. Simulated ERP data

Fig. 3 directly compares the PCA solutions for the two

simulated ERP data sets using either a covariance or a

correlation matrix for factor extraction. As can be seen from

Fig. 3A, the first covariance-based factor (solid line)

explained effectively all the data variance for the simulated,

noise-free data, which is an almost exact representation of

the true variation introduced to this data set by jointly

scaling the ERP template. Moreover, the shape of the

component waveforms also reflects the shape of

the template. It is important to note that the shape of

the loadings vector is not a simple copy of the template, as

the grand mean is removed when factoring the covariance

matrix, but rather reflects the variance around that template.

As no additional noise was included in this data set, all

variance stems exclusively from the ‘topographic’ differ-

ences between selected electrodes, which were introduced

by linear scaling of the template. As a direct consequence of

the linear scaling, differences from the original template are

larger in absolute terms at ‘component’ peaks, and gradually

decrease along the rising and falling slopes.

In contrast, the correlation-based PCA produced a first

component (dashed line) that merely indicates the direction

but not the variance shape, resulting in two loading

rectangles: the first rectangle had a constant amplitude of

21.0 and spanned exactly the time period of the simulated

component N1, whereas the second rectangle had a constant

amplitude of þ1.0 and spanned exactly the time period of

the simulated component P3. Likewise, a second factor had

a constant amplitude of 21.0 and an onset and duration that

exactly matched the constant, low-level offset introduced to

the baseline. A correlation-based PCA does not distinguish

between small and large variations of different variables

(time points), provided they are linearly related.

Fig. 2. Grand mean (GM) ERP waveforms to visual stimuli for 16 healthy adults at 30 scalp locations (A), averaged across all experimental conditions (data

from Kayser et al., 2000a). The inset shows the GM across all recording sites. To clarify the ERP component structure, waveforms were enlarged and separately

plotted for negative and neutral stimuli at representative sites Cz, P7, and P8 (B), where P1, N1, N2, and P3 were prominent when using a nose reference. ERP

differences of emotional content, the main objective of this previous study, were clearly evident between 400 and 700 ms, and larger over right (P8) than left

(P7) lateral-parietal sites. N2, the most distinct ERP component at these sites, revealed a marked right-larger-than-left hemispheric asymmetry.
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The amount of variance explained by the first two

correlation-based factors was 48.08 and 14.42%, respect-

ively. This approximates the proportion of the number of

variables used for simulating N1 and P3 (50) and the low-

level baseline offset (15) with respect to the total number of

submitted variables (128), but disproportionally reflects the

absolute amount of variance introduced by these two

independent variations. In addition, the correlation-based

PCA extracted another 39 factors, the first 3 are shown in

Fig. 3A as factors 3–5, each explaining 0.96% variance and

having a loading of þ1.0 that spanned exactly one variable,

apparently randomly assigned to variables outside the

loading range of factor 1 and 2. It is obvious that these

additional factors are a mere artifact of the need to explain

another 37.5% variance which remains unexplained after

extraction of the first two factors.

The PCA solutions performed on the simulated data with

added noise when factoring either the covariance or

correlation matrix are compared in Fig. 3B. Each of the

two unrestricted solutions extracted a total of 78 factors.

Again, the first covariance-based factor explained most of

the data variance (94.52%), closely matching the introduced

variation, and its time course closely approximated the

introduced variance shape. However, no distinct second

covariance factor was extracted that could be related to the

low-level baseline offset. Evidently, this systematic vari-

ation was completely obscured by the added noise. Rather,

each of the additional 77 factors explained less than 0.1%

variance, gradually decreasing to 0.06%, and had loadings

peaks of small amplitude scattered across the recording

epoch (see solid lines for factors 2–5 in Fig. 3B).

In contrast, the first correlation-based factor explained

45.78% variance, with a time course that resembled that of

the simulated, noise-free data (dashed line in Fig. 3B).

However, rising and falling edges of the rectangles were

notably curved, which appeared to be a logical consequence

of those time periods when the random noise exceeded or

equaled the signal. In other words, the noise smoothed the

loading shape and feigned a true loading peak, and this

effect would be exaggerated by further lowering the signal-

to-noise ratio. The remaining 77 factors explained 1.07% or

less variance, gradually decreasing to 0.01%, and had again

single, isolated loadings with an amplitude of approximately

þ1.0, dispersed over the recording epoch (see dashed lines

for factors 2–5 in Fig. 3B).

3.2. Real ERP data (visual modality)

3.2.1. Component waveforms of PCA solutions

An overview of the different Varimax-rotated PCA

solutions derived from real ERP data collected during the

visual half-field paradigm is given in Fig. 4. The left panel

(Fig. 4A) shows up to the first 10 component waveforms that

were obtained after factoring the covariance matrix of

Fig. 3. Time courses of factor loadings for the initial PCA factors extracted (up to 5) from the covariance (solid lines) or correlation (dashed lines) matrix for

simulated ERP data without (A) and with noise (B). The percentage of explained variance after Varimax rotation is indicated at the right of each loadings vector

(values for covariance-based loadings are plotted above the baseline, correlation-based loadings are plotted below). Note that only two factors were extracted in

the covariance-based PCA for simulated ERP data without noise, but 41 factors in the correlation-based PCA using the same data. For simulated ERP data with

noise, 78 factors were extracted for both extraction methods.
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Fig. 4. Overview of PCA solutions for real ERP data (visual task). Varimax-rotated factor loadings are plotted in their extraction sequences (along columns and up to the first 10 factors extracted) for PCA

solutions based on the (A) covariance matrix using unstandardized loadings, and (C) the correlation matrix (solid lines) or the covariance matrix using standardized loadings (dashed lines). PCA solutions are

ordered (along rows) by the extraction criterion (i.e., the number of factors to be extracted and retained before rotation). Note that for this data set 109 factors were sufficient to completely explain the data variance

produced by 110 input variables. Insets show overlaid factor loadings of a single component (factor 3, approximate peak latency 250 ms) for restricted (#12) and liberal ($20) extraction criteria for (B)

covariance-based and (D) correlation-based solutions.
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the raw data, ordered across columns in the sequence of

extraction. Ordered across rows are the solutions derived by

systematically varying the number of factors to be extracted

(using this systematic, individual component waveforms

will be referred to by their row and column number).

A closer look at the first column reveals that all solutions

extracted a high-variance factor that extended over a

relatively long time period with higher loadings towards

the end of the recording epoch. However, the shape of the

loading vector of this first factor changed depending on the

extraction limit, which is particularly obvious when

comparing conservative solutions (e.g., see component

waveforms 1-1, 2-1, and 3-1 in Fig. 4A). In a similar

manner, the second factor revealed, for all solutions, loading

peaks at approximately 450 ms, which changed shape for

more restrictive solutions (see component waveforms 2-2,

3-2, and 4-2 in column 2 of Fig. 4A). The 3rd factor peaked

for all solutions at approximately 250 ms. Fig. 4B (left panel

inset) compares the different solutions for factor 3 by

overlaying all component waveforms for extraction limits of

3–12 total factors (i.e., more restricted solutions), and also

overlaying all component waveforms for extraction limits of

20 or more total factors (i.e., more liberal solutions). As can

be seen, there is considerable variation between more

restricted solutions, whereas the component waveforms of

factor 3 are practically identical for more liberal solutions.

For low-variance components (i.e., for factors extracted

after the first 3 components), fluctuations of shape and

position within the extraction sequence were observed.

Despite this inconsistency, some components could be

identified without difficulty by their unique loading peak

across the different solutions (e.g., one distinct factor with

an approximate peak latency of 170 ms can be recognized in

component waveforms 5-5, 20-5, and in column 4 for the

remaining solutions shown in Fig. 4A). By-and-large,

component waveforms tended to become more stable with

more liberal extraction criteria. This was notably the case

for all of the first 10 components when applying an

extraction criterion of 30 or more factors—there were no

differences in shape or extraction sequence between these

solutions. A total of 109 components was sufficient to fully

account for the data variance of this particular data set with

110 input variables (i.e, the PCA allowing the extraction of

110 components extracted exactly the same 109 factors).

Fig. 4C shows the equivalent PCA solutions when

either the correlation matrix was factored and rotated

(solid lines), or the covariance matrix was factored but

standardized loadings were rotated (superimposed dashed

lines). On the whole, there were only marginal differences

between the PCA solutions derived from these two

extraction/rotation methods: almost none were found for

liberal extraction criteria (30 or more factors extracted),

and the few notable differences were mainly observed for

more conservative extraction criteria and towards the end

of the extraction sequence (e.g., see component wave-

forms 2-2, 3-3, 4-4, and 5-5).

By comparing the correlation-based PCA solutions

(Fig. 4C) to their covariance-based counterparts (Fig. 4A),

it becomes clear that the first 3 factors target the same

variance: all extracted a high-variance component as factor

1, followed by two factors with approximate peak latencies

of 450 and 250 ms. However, when compared to the co-

variance-based solutions, the correlation-based components

always had a wider, less focused loading peak, which was

frequently accompanied by significant secondary loadings.

These undesirable characteristics are prominent for factor 3,

particularly for more conservative solutions (Fig. 4D top, as

compared to 4B top). Nevertheless, correlation-based PCA

solutions also become more stable with more liberal

extraction criteria. For example, the shape of the component

waveforms of factor 3 did not change for an extraction

criterion of 20 or more factors (Fig. 4D bottom).

The most striking difference between the unstandardized

covariance-based PCA solutions and the correlation- or

standardized covariance-based solutions was the presence

of factors with multiple and inverted loading peaks of short-

latency, some of which occurred during the baseline period

(cf. component waveforms in columns 4–6 of Fig. 4C).

These factors were even present in the most stable,

unrestricted solution (component waveforms 109-4 and

109-6 of Fig. 4C), and also explained a considerable

proportion of variance (i.e., 5.25 and 4.46% for factors 4 and

6, respectively, after Varimax rotation; see Fig. 5).

Fig. 5. Eigenvalues for the first 10 factors extracted from the unrestricted

covariance- or correlation-based PCA solutions, plotted as fractions of

overall variance after Varimax rotation. The arrow indicates the Scree-test

cutoff-criterion for the corresponding slope of Eigenvalues of the

covariance matrix before rotation.
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3.2.2. Component topographies of PCA solutions

To compare the associated factor score topographies of

related components for each of the different PCA solutions,

both within extraction methods (covariance or correlation

matrix) as well as across the two methods, squared

differences between factor scores of two solutions were

summed across all cases. As illustrated for the scores of

factor 3, Fig. 6 shows this similarity measure as a function

of the number of extracted factors for the within-methods

comparison, computed using the differences from the

unrestricted solutions. By plotting the slope of this function

on a common logarithmic scale, it becomes clear that factor

scores continue to become more stable and more similar

with more liberal extraction criteria for both extraction

methods, until they converge on the unrestricted solution.

However, for all practical purposes, differences in factor

scores are negligible (103 reduction) for this data set after

the extraction of 20 or more factors. Comparable functions

were observed for all factors, revealing the same pattern of

convergence. Moreover, the similarity functions between

extraction methods (i.e., using the differences between

covariance- and correlation-based solutions for each

extraction criterion) also indicated an increase of similarity

with more liberal extraction criteria, until differences

between methods stabilized on a negligible (105 reduction)

level after the extraction of 40 or more factors.

Fig. 7 shows the factor score topographies for the first 10

components of the unrestricted PCA solutions, along with

superimposed plots of their factor loadings. As a direct

result of the increased similarity, the most remarkable

observation is that 8 of these initial 10 components revealed

almost identical factor score topographies across extraction

methods (Fig. 7A and B), although corresponding factors

differed in peak latency (Fig. 7C and D), explained variance

(Fig. 5), and position within the extraction sequence (Fig. 4).

For example, factor 4 of the covariance matrix and factor 5

of the correlation matrix were both characterized by a peak

latency of 170 ms, and a mid-central negativity paired with

an occipital positivity (Fig. 7A and B), thereby closely

corresponding to a central N1 which inverted at occipital

sites (Fig. 2). Analogously, factors 1–3 revealed topogra-

phies closely corresponding to a mid-central positive slow

wave, a posterior P3, and a right-lateralized posterior visual

N2 for both extraction methods, despite differences in shape

and peak latency (Fig. 7C and D). Even low-variance factors

were paired across extraction methods, some of them

apparently related to various phases of P3 activity

(covariance peak latencies of 330, 560, and 640 ms),

Fig. 6. Similarity of factor scores as a function of extraction criterion (number of factors to be extracted) for covariance- and correlation-based PCA solutions,

illustrated for factor 3. Similarity is expressed as the sum of squared differences from the unrestricted solutions (109 extracted factor), summed across all cases

(1920) for visual ERP data. Data range from 1414.23 to 0.000002, and are shown on a common logarithmic scale. Factor scores continue to become more stable

and more similar with more liberal extraction criteria, until they converge on the unrestricted solution.
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although not all were among the first 10 components

extracted. Evidently, by enforcing simple structure, the

Varimax algorithm will rotate factors of different extraction

methods to a unique solution, if the number of vectors to

rotate is sufficiently large to reallocate the loadings

accordingly. Once identical or almost identical component

waveforms are established, irrespective of their origin, the

same associated factor scores are generated.

Factor 7 of the covariance matrix (peak latency 130 ms)

and factor 9 of the correlation matrix (120 ms) were

characterized by a distinct right-larger-than-left posterior

positivity paired with posterior midline negativity, which

was clearly related to early P1 activity (cf. sites P9 and P10

in Fig. 2). It is important to note, however, that this distinct

activity was not extracted as a unique component unless 20

or more factors were extracted and rotated (Fig. 4A and C).

Thus, most common rules to determine the number of

factors to extract, retain, or interpret would have precluded

the formation of this factor. Applied to the correlation

matrix, the Eigenvalue-larger-than-one rule would only

retain the first 14 factors. The arrow in Fig. 5 indicates the

Scree-test cutoff-criterion for the covariance-based solution,

revealing that only the first 3 factors would have been

retained, therefore also missing the N1 factor.

The most glaring problem of the correlation-based

solutions is the extraction of irrelevant, high-variance

components, exemplified for the current data set by two

factors with positive and negative loading peaks of

maximum amplitude before or immediately after stimulus

onset (see factors labeled 270 and 10 in Fig. 7D). As

demonstrated by the correlation-based PCA of the simulated

ERP data, the most likely cause is systematic, low-

amplitude signal around stimulus onset, which in these

cases inverted in polarity.

To fully comprehend the spatiotemporal dynamics of the

extracted components, one needs to simultaneously appreci-

ate the topographic information provided by the factor

scores with regard to the duration of the overlapping

component waveforms. While this mental transformation

can be accomplished by close scrutiny of their static

Fig. 7. Topographies of factor scores (A,B) and superimposed factor loadings (C,D) for the first 10 components of the unrestricted PCA solutions using real

ERP data recorded from 16 healthy adults during a visual half-field paradigm (Kayser et al., 2000a). Shown are the solutions based on the covariance matrix

(A,C) and the correlation matrix (B,D). Factors are labeled using the peak latency of the loadings, but topographies of factor scores (top view, nose upwards)

are ordered according to their extraction sequence (left to right, top to bottom).

J. Kayser, C.E. Tenke / Clinical Neurophysiology 114 (2003) 2307–23252318



two-dimensional representations (e.g., Fig. 7A and C), the

spatiotemporal dynamics become intuitively obvious by

virtue of the linear decomposition of the association matrix,

which allows a time series of factor score topographies to be

reconstructed by simply multiplying the factor loadings

vector with the mean of the associated factor scores. An

animation of such a time series created for the covariance

data presented in Fig. 7A and C reveals the distinctive

spatiotemporal sequence of P1, N1 and N2, and further

clarifies the temporal overlap, however, topographic

specificity, of factors corresponding to various phases of

the late positive complex.4

3.2.3. Statistical implications of different extraction criteria

The most important question for practical research

purposes is whether the observed differences for identified

components, which may be quite small at times, have an

impact on statistical tests commonly used to evaluate

variation across electrodes, conditions, and subjects. Using

high-variance factors corresponding to ERP components of

critical interest for the Kayser et al. (2000a) study (i.e., N2

and P3), we systematically computed separate ANOVA

reflecting the study design for each factor and each

covariance- and correlation-based PCA solution. The

resulting F statistics were compared for representative

experimental effects crucial for the objective of the study.

As an illustration, Fig. 8 gives the F values of 4 effects as a

function of extraction criterion. The direction of these

effects did not change with any extraction method, and can

be inferred from Fig. 2B. The greater P3 amplitude to

negative than neutral stimuli, as measured by factor 2, was

significant (F½1;14� . 4:60, p , 0:05) for covariance-based

solutions (filled circles in Fig. 8A) for all but the most

restricted extraction. In contrast, this main effect was

insignificant for correlation-based solutions (open triangles

circles in Fig. 8A) for strict conservative extraction criteria

(for 4 or less factors extracted, all F½1;14� , 3:10, p . 0:10),

only marginally significant for somewhat relaxed extraction

criteria (for 5–9 factors extracted, all F½1;14� , 4:60,

p , 0:10), and equaled or just exceeded a conventional

significance level for liberal extraction criteria (for 10 or

more factors extracted, all F½1;14� $ 4:60, p # 0:05). The N2

asymmetry, as measured by factor 3 (Fig. 8B), found no

statistical support with conservative extraction criteria (for 7

or less factors extracted, all F½1;14� , 3:10, p . 0:10), but

was significant with more liberal criteria (for 13 or more

factors extracted, all F½1;14� . 4:60, p , 0:05) for solutions

of either association matrix. However, intermediate extrac-

tion criteria (8–12 factors extracted) yielded significant

results for covariance-based solutions (all F½1;14� . 4:60,

p , 0:05), but insignificant or marginally significant results

for correlation-based solutions (all F½1;14� , 4:60,

p . 0:05). Likewise, the lateralized emotional content

effect for P3, as measured by factor 2 (Fig. 8C), randomly

crossed the conventional 0.05 threshold for covariance-

based solutions when fewer than 27 factors were extracted,

for instance, approaching a 0.01 significance level for 6

factors extracted (F½1;14� ¼ 8:60, p ¼ 0:011), and almost

dropping to 0.10 for the solution restricted to 16 factors,

before settling on a 0.05 significance level for all other

liberal extraction criteria. For correlation-based solutions,

this important interaction even varied between significance

(for 3 and 4 factors extracted, F½1;14� . 4:60, p , 0:05) and

non-significance (for 2 and 6–9 factors extracted, all

F½1;14� , 3:10, p . 0:10) for more conservative solutions,

before also settling on a 0.05 significance level for more

liberal extraction criteria. Conversely, an Emotional �

Content £ Hemisphere interaction effect was effectively

non-existent in the F statistics for factor 3 (Fig. 8D) for

solutions of either association matrix when more than 12

factors were extracted, but attained notable F values when

extraction was limited to 6 or 10 factors for covariance-

based solutions (both F½1;14� . 2:10, p , 0:17), or to 5 and

7 – 9 factors for correlation-based solutions (all

F½1;14� . 2:20, p , 0:16).

Thus, as the factors converged towards the unrestricted

solution, statistical effects also converged on a stable level,

which was accomplished for the present data set when 30 or

more factors were extracted, corresponding to 99.64%

explained variance for the covariance-based solution

(99.50% for the correlation-based solution). It should be

noted that when extracting as many as 23 factors (98.96 and

98.60% data variance), the F statistic was still not stable

(e.g., Fig. 8C). Statistical effects for the covariance-based

solutions were generally stronger than those for correlation-

based solutions, if these effects were also significant for the

unrestricted solutions (Fig. 8A–C); analogously, statistical

effects tended to be weaker for covariance- compared with

correlation-based solutions if the F tests of the unrestricted

solutions were insignificant (Fig. 8D). As these statistical

analyses typically form the basis for interpreting exper-

imental findings, this remarkable observation implies that

failing to effectively explain all the data variance could lead

a researcher to over- or underestimate effects of interests,

missing the goal of accurately measuring relevant ERP

components. This problem is move severe with correlation-

than covariance-based solutions, which may result from a

less-efficient description of the sequential organization of

ERP variance, particularly with respect to the experimental

conditions.

3.3. Real ERP data (auditory modality)

The different Varimax-rotated PCA solutions derived

from auditory ERP data collected during tonal and phonetic

oddball tasks revealed the very same principles. Due the

completely different nature of this ERP paradigm (e.g.,

modality, response requirements, cognitive demands, pro-

cedural characteristics, etc.), different task-specific factors

4 This animation can be viewed and obtained at the following URL:

http://psychophysiology.cpmc.columbia.edu/cn2003.html.
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were extracted (e.g., Kayser et al., 2001). However, along

the sequence created by extraction procedures and criteria,

these PCA components similarly converged towards an

unrestricted solution, which was again found to be the most

stable one. Since the general and statistical properties of

these solutions were identical to those already described for

the visual ERP data set, these additional analyses for

auditory data are not further detailed in this report.

4. General discussion

The implications of the reported observations for

temporal PCAs using Varimax rotation to achieve simple

structure are straightforward. First, factor underextraction

may be a serious problem, since limiting the number of

components changed the morphology of some components

considerably. On the other hand, overextraction was not

a concern, since more liberal or even unlimited extraction

criteria did not degrade or change high-variance com-

ponents, which is in close agreement with previous Monte

Carlo studies (Wood et al., 1996). Instead, their interpret-

ability was improved by more distinctive time courses with

narrow and unambiguous peaks (i.e., low secondary

loadings). Moreover, some physiologically meaningful

ERP components, either small in amplitude, or topographi-

cally localized, or both (e.g., P1), may have a PCA

equivalent, which cannot be extracted with restricted

solutions due to their low overall variance contributions.

Thus, whenever computational constraints are not an issue,

unrestricted PCA solutions, or solutions explaining almost

all the variance (.99%), are the preferable choice.

Secondly, unstandardized covariance-based factors had

more distinctive time courses (i.e., lower secondary load-

ings) than the corresponding correlation-based factors,

which allowed a better interpretation of their electrophysio-

logical relevance. Moreover, correlation-based solutions

were likely to produce artificial factors that merely reflected

small but systematic variations, for instance, when the ERP

waveforms intersected the baseline. While such an artifact

may be easily recognized as such during the baseline, similar

Fig. 8. Statistical effects (F values) of analyses of variance (ANOVA) performed on covariance- and correlation-based PCA factor scores as a function of

extraction criterion (number of factors to be extracted). For all analyses, gender was a between-subjects factor (N ¼ 16, 7 male), and emotional content (2),

visual field (2), hemisphere (2), and site (3 homologous electrode pairs as indicated in parentheses) were within-subjects factors (cf. Kayser et al., 2000a).

Shown are critical F tests (all df ¼ 1; 14): for factor 2 (P3), the emotional content main effect (A); for factor 3 (N2), the hemisphere main effect (B); and for

both factors, the Emotional Content £ Hemisphere interaction effect (C,D). Dashed lines indicate F values corresponding to conventional significance levels of

0.05 and 0.10. Note that with more conservative extraction criteria, the F statistic of any given effect is highly variable and may or may not attain statistical

significance, despite factors 2 and 3 representing high-variance components. In contrast, statistical effects become very stable with more liberal extraction

criteria (25 or more factors extracted). The abscissa break between 35 and 105 extracted factors indicates the omission of redundant F values.

J. Kayser, C.E. Tenke / Clinical Neurophysiology 114 (2003) 2307–23252320



small, systematic variations may also be present throughout

the recording epoch, but then with less justification to be

discounted. Including the baseline within the submitted data

appears to be a reasonable methodological choice to direct

attention to the extraction of spurious PCA components.

Standardizing covariance-based PCA factors before rotation,

a default operation in some statistical software packages,

approximated correlation-based solutions, and ultimately

yielded the same coefficients (factor loadings) when all

components were rotated. Thus, PCA solutions based on the

covariance matrix using the unstandardized components for

rotation are clearly preferable over correlation-based sol-

utions and extraction/rotation procedures that mimic the

latter. Apart from merely describing the type of association

matrix (Picton et al., 2000), it is strongly suggested that

investigators clearly identify the procedures and statistical

software used to perform the PCA.

Thirdly, the differences of the extracted components

resulting from these methodological choices can have a

profound impact on the statistical analyses usually per-

formed on the associated factor scores to test experimental

hypotheses. Factor underextraction yielded volatile statisti-

cal tests, whereas increasingly liberal extraction criteria

converged on a stable test statistic. The problem is

aggravated with correlation-based solutions. While the

reported observations clearly indicate that these problems

are a real concern for the specific visual and auditory tasks

considered in this report, it is currently unknown whether

there are certain properties of other ERP data sets (e.g.,

differences in effect size, sample size, electrode montage,

experimental design, etc.) that may render these concerns

unnecessary—a question that may be addressed with suitable

simulation studies. Meanwhile, one may be inclined to

substitute the various guidelines for the number of com-

ponents to extract and rotate (e.g., scree test, Eigenvalue

larger than one, parallel analysis) with the graphical analysis

presented in Fig. 8 to justify extracting less than all possible

factors. However, not every researcher may be prepared to

invest this extra effort. Since the true number of factors

granting stable statistical tests is generally unknown, we

would argue that employing an unrestricted PCA solution is

the conservative approach.

While this report has focused on temporal PCA, similar a

priori knowledge about the topographical aspects of ERP

variance can be applied to evaluate component measures

when using a spatial PCA, or a combination of both

approaches (e.g., Achim and Bouchard, 1997; Möcks,

1988a,b; Spencer et al., 2001). For a spatial PCA, the

dimensions (space and time) in which an ERP component

factor is defined are parsed in a complementary fashion:

variables (matrix columns) consist of electrode locations

included in the EEG montage, whereas matrix rows consist

of time points, conditions, and participants. Factor extrac-

tion is determined by reliable variations of topography

(space) rather than waveform (time). In this case, variance

should be relatively small at sites closer to the recording

reference, but larger at more distant scalp locations and over

scalp regions used to define individual ERP components

within the context of a specific paradigm. For example,

variance should be larger at mid-parietal sites when a

classical P3b is observed for infrequent events in an oddball

paradigm (e.g., Spencer et al., 1999), or over inferior-lateral

sites for visual N1 and N2 components when ERPs are

referenced to nose tip (e.g., Kayser et al., 1999, 2003).

The observed ERP component structure, which is evident

from the ERP waveforms, may considerably vary with

different recording references (e.g., Dien, 1998b; Kayser

et al., 2003), although the underlying generator activity

remains the same, meaning that the conceptual ERP

component structure is unchanged. Any change in reference

will also affect PCA component extraction, since the

variance is reallocated around a different grand mean wave-

form. However, its sensitivity to variance rather than to

changes of peaks and troughs makes the PCA approach less

susceptible to reference changes compared to more tra-

ditional ERP measures, such as area measurements or peak

amplitudes. It has been argued that an average reference may

avoid some of the pitfalls inherent to a single reference (e.g.,

Dien, 1998b), and suggested that an average reference best

approximates a “reference-free” recording (Lehmann, 1984;

Pascual-Marqui and Lehmann, 1993; however, see Desmedt

and Tomberg, 1990; Tomberg et al., 1990). While an average

reference may provide a reasonable compromise, it is not a

universal or “reference-free” solution, since ERP waveforms

are obviously unique to the specific recoding montage.

All PCA solutions are dependent on the characteristics of

the raw data, which will not only change with the choice of

reference but with any methodological variation (whether

deliberate or not), including the experimental paradigm,

specific procedure, stimulus modality, targeted population,

sample heterogeneity, to name just a few. For any data set,

the PCA approach will reveal the underlying variance

structure of the raw data in a systematic, comprehensive

fashion. It may be argued that by recommending use of an

unrestricted solution, the main purpose of a PCA is put ad

absurdum, namely to attain a systematic reduction of the

data dimensionality into meaningful entities. The key issue

here, however, is the term meaningful: if the extracted

factors are meaningful, PCA factors are a valuable adjunct

to conventional ERP techniques. It is the investigator’s

responsibility to justify the selection or rejection of

components for further analysis by attributing a ‘meaning’

to these components within the context of the research. This

must be guided by an understanding of the correspondence

between the time course and topography of PCA factors and

anticipated ERP components (e.g., N1, N2, P3, slow wave),

the effects of the experimental manipulations, and inter-

pretable sources of data artifacts.

Our findings clearly suggest that factor interpretation is

improved with unrestricted, covariance-based solutions.

The meaning and qualitative distinctiveness of a PCA

component cannot be decided by a statistical program,
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because the amount of explained variance alone does not

make a factor meaningful. As demonstrated here for tem-

poral PCAs, the amount of variance depends largely on the

number of time points and the number of scalp locations,

which together define a component. Thus, early, rather

transient ERP components with a distinct topography (e.g.,

N1) will necessarily explain a much smaller proportion of

the overall variance than sustained, long-lasting com-

ponents covering a broad region (e.g., a positive slow

wave). Components that summarize slow ERP activity over

a longer time period, usually towards the end of the recor-

ding epoch (sometimes also at the beginning of the epoch if

no baseline correction was performed), may explain a great

amount of data variance, but do not necessarily reflect

meaningful ERP activity but rather variance associated with

the grand mean waveform (Kayser et al., 1997, 2000a; van

Boxtel, 1998; Wastell, 1981). However, as such components

gather variance not systematically related to the experimen-

tal manipulations, these variance contributions are removed

from other, more meaningful ERP components, thereby

clarifying the interpretation of the latter factors. Depending

on the experimental question, a distinct low-variance factor

may be by far more important to the objective than high-

variance factors, which explain unsystematic variance, or

variance associated with effects of secondary interest. This

separation of meaningful variance is a very desirable

characteristic of the PCA, because when unsystematic

variance is effectively filtered from the data, it can no longer

obscure effects of primary interest.

When carefully applied with sufficient understanding of

the implications for the data, PCA can become a valuable,

general-purpose tool, serving filter functions such as

removing noise from a waveform by reassembling it from

a subset of PCA components (Sinai and Pratt, 2002), or

identifying and eliminating EOG artifacts using a spatial

PCA (Neurosoft, 2001). Likewise, components may be

recombined in a new, meaningful fashion, for instance, by

establishing a composite P3 measure, or by calculating a

PCA-based equivalent for N2–P3 amplitude (Kayser et al.,

1997, 1998, 2001).5

As with any analytic technique, ERP–PCA approaches

may have pitfalls that could result in misleading con-

clusions, particularly when data include outlying cases,

temporal or spatial jitter, or have low signal-to-noise ratios

(e.g., Chapman and McCrary, 1995; Dien, 1998a; Donchin

and Heffley, 1978; van Boxtel, 1998). In this case,

the combined approach of PCA factor extraction, Varimax

rotation, and ANOVA performed on factor scores may

result in a misallocation of variance, an issue repeatedly

addressed in the literature (Achim and Marcantoni, 1997;

Beauducel and Debener, 2003; Chapman and McCrary,

1995; Möcks, 1986; Möcks and Verleger, 1986; Wood and

McCarthy, 1984). Since a further discussion of these issues

is beyond the scope of this report, it will suffice to note that

traditional component measures are also, and more severely,

affected by these limitations (Beauducel et al., 2000;

Beauducel and Debener, 2003; Chapman and McCrary,

1995; Donchin and Heffley, 1978; Wood and McCarthy,

1984). What is ultimately worse, traditional peak and area

measures invite a more superficial data analysis, particularly

when combined with an automated scoring routine, and are

therefore less likely to alert the researcher that there may be

a serious problem with the recorded data.

Our goal is to use PCA as a heuristic tool for (1)

identifying relevant ERP components, and (2) generating

efficient measurements for temporally and spatially over-

lapping components for a given data set. When applied

appropriately, PCA-based component measures are more

efficient when compared to more traditional ERP measures.

We have reported better statistical properties for PCA-based

component measures as opposed to area definitions (i.e.,

larger effect sizes; Kayser et al., 1998), and found PCA-based

measures to have by far superior reliabilities than peak-

determined amplitudes (Beauducel et al., 2000). In particu-

lar, PCA avoids the subjectivity of selecting time windows

for components that invert across the scalp topography, or for

subjects, conditions, or recording sites that reveal no distinct

peaks within the time interval of interest, the most glaring

problem in implementing peak amplitude and latency mea-

sures. Instead, after understanding the data variance, the

investigator’s expertise is required to make informed deci-

sions regarding the interpretation of the extracted factors.
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Appendix

The proposed unrestricted, unstandardized covariance-

based PCA with Varimax rotation may be compactly coded

in high-level numerical languages, including the popular

MatLab (The MathWorks, Inc., 2002, MatLab Version 6.5,

Release 13 [http://www.mathworks.com]). All crucial com-

putational steps are exemplified by the MatLab routine

5 Just like time series data, other physiological measures characterized by

sequenced data may also benefit from the proposed PCA methodology,

using similar considerations tailored to the data. For instance, EEG

frequency spectra contain large amplitudes at low frequencies (more

variance), converge towards zero at high frequencies (less variance at

‘baseline’), and include reproducible condition-related effects (eyes open

and closed) in the alpha range. By submitting amplitude spectra to a

frequency PCA, we have extracted distinct factors representing overlapping

EEG components differentiating various subbands of alpha, EOG, and

EMG activity (Debener et al., 2000; Kayser et al., 2000b).
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provided below. It is important to note that the component

weights (i.e., the factor scores) are estimated from inter-

mediate factor score coefficients (rescaled with respect to the

input variables; cf. lines 25–27) and the normalized raw data

(ll. 28–34). The implemented Varimax procedure applies

Kaiser’s normalization (i.e., the rows are normalized by their

individual lengths) before rotation, which is reversed after

Varimax convergence. Marginal computational differences

from the BMDP-4M implementation (Dixon, 1992) are

largely due to improved data precision, which affects

estimates of matrix rank order (l.8) and Varimax conver-

gence (l.14).
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