
Reference-free quantification of EEG spectra: Combining current source

density (CSD) and frequency principal components analysis (fPCA)

Craig E. Tenkea,b,*, Jürgen Kaysera,b

aDepartment of Biopsychology, Unit 50, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032-2695, USA
bDepartment of Psychiatry, College of Physicians & Surgeons of Columbia University, New York, NY, USA

Accepted 4 August 2005

Abstract

Objective: Definition of appropriate frequency bands and choice of recording reference limit the interpretability of quantitative EEG, which

may be further compromised by distorted topographies or inverted hemispheric asymmetries when employing conventional (non-linear)

power spectra. In contrast, fPCA factors conform to the spectral structure of empirical data, and a surface Laplacian (2-dimensional CSD)

simplifies topographies by minimizing volume-conducted activity. Conciseness and interpretability of EEG and CSD fPCA solutions were

compared for three common scaling methods.

Methods: Resting EEG and CSD (30 channels, nose reference, eyes open/closed) from 51 healthy and 93 clinically-depressed adults were

simplified as power, log power, and amplitude spectra, and summarized using unrestricted, Varimax-rotated, covariance-based fPCA.

Results: Multiple alpha factors were separable from artifact and reproducible across subgroups. Power spectra produced numerous, sharply-

defined factors emphasizing low frequencies. Log power spectra produced fewer, broader factors emphasizing high frequencies. Solutions

for amplitude spectra showed optimal intermediate tuning, particularly when derived from CSD rather than EEG spectra. These solutions

were topographically distinct, detecting multiple posterior alpha generators but excluding the dorsal surface of the frontal lobes. Instead a low

alpha/theta factor showed a secondary topography along the frontal midline.

Conclusions: CSD amplitude spectrum fPCA solutions provide simpler, reference-independent measures that more directly reflect neuronal

activity.

Significance: A new quantitative EEG approach affording spectral components is developed that closely parallels the concept of an ERP

component in the temporal domain.

q 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

1.1. Quantification of EEG rhythms

Since Berger’s first observations of rhythmicity in the

‘resting’ EEG, the alpha rhythm has arguably become the

best known and most frequently studied EEG pattern (Basar,

1997; Gloor, 1969; Niedermeyer, 1997). For healthy, awake

adults, alpha is characterized by a spectral peak at
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approximately 8–13 Hz (the classic ‘alpha band’), and

may reflect neuronal activity related to one or more distinct

sources. These sources include the classic posterior ‘visual’

alpha, a sensorimotor mu rhythm, a temporal ‘third rhythm’

(Niedermeyer, 1987, 1997), and sleep-related spindle

activity (Ishii et al., 2003). Evidence from animal models

suggests that alpha rhythmicity is a result of both the tuning

of the local cortical network (e.g. Lopes da Silva, 1991;

Steriade et al., 1993; Timofeev et al., 2002), as well as the

synchronous activation of thalamocortical projections via

the thalamic reticular nucleus (Buzsaki, 1991; Steriade,

2000).

Currently, the standard approach to study EEG rhythms

uses EEG power spectra as a quantitative measure of
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the variance of the EEG (Bendat and Piersol, 1971; Gasser

and Molinari, 1996; Pivik et al., 1993; Pollock et al., 1991).

This information is commonly reduced even further by

integrating across normative spectral bands (e.g. 8–13 Hz

for alpha). These methodological norms provide operational

definitions of band-limited activity that are easily applied to

groups of subjects, regardless of the presence or absence of

strong rhythmicity in any EEG channel.

Quantitative EEG (qEEG) measures are frequently

applied in clinical research to compare spectral topogra-

phies recorded from individuals with identifiable pathology

with those from a normative database (e.g. Duffy et al.,

1981, 1994). Since this approach is largely descriptive, it

does not explicitly require a theoretical rationale regarding

the nature of the underlying pathology. Instead, statistically

reliable differences themselves provide the means for

classifying EEG rhythms and topographies. This approach

is limited by the characteristics of the normative group, as

well as by the quality, stability and sensitivity of the

underlying EEG differences. A methodological variation,

which relies on selected recording sites to evaluate specific

regional hypotheses (e.g. Davidson and Fox, 1989;

Henriques and Davidson, 1997), has attracted considerable

interest in research on frontal EEG asymmetry and affect in

both healthy and psychiatric populations (e.g. Allen and

Kline, 2004). The field of Brain Computer Interface (BCI)

technology provides convincing evidence for the utility of a

targeted, regional approach to qEEG (Babiloni et al., 2001;

Cincotti et al., 2003; Pfurtscheller, 2003; Pineda et al., 2003;

Wolpaw and McFarland, 1994), since only stable, reliable

EEG changes are suitable as a response interface for

neurologically impaired patients.

Each of these approaches may be appreciated from a

pragmatic, result-driven perspective. However, regional

hypotheses may be evaluated more efficiently if the

information contained in a complete scalp topography is

fully exploited, and even a useful, reproducible BCI

measure can generally be improved once its origin is

thoroughly understood. Unfortunately, only limited ana-

tomical and physiological inferences can be drawn from

EEG spectra. Bridging the gap between the neuronal

generators and the observed EEG spectra requires a

thorough understanding of the strengths and limitations of

spectral methods in the context of a volume-conduction

model.
1.2. Volume-conduction and CSD

CSD is a reference-independent measure of the strength

of extracellular current generators underlying the grossly

recorded EEG that is firmly based on a linear volume-

conduction model (Nicholson, 1973; Nicholson and Free-

man, 1975). This measure can be derived from a vector form

of Ohm’s law:

J Z sE (1)
where J is the current flow density, E is the electric field and

s is the conductivity tensor of the medium. The application

of a divergence operation (V$) allows this formal

relationship to be expressed in scalar terms

Im ZKðV$sðVFÞÞ (2)

where the CSD (Im) is a scalar quantity that is computed

from the negative gradient of the measured field potential

(KVF). If tissue impedance is spatially invariant, s may be

replaced by a scalar constant (ss), yielding Poisson’s source

equation:

KIm Z ssV
2F (3)

CSD is thereby proportional to the second spatial

derivative (i.e. Laplacian; V2) of the measured field

potential.

Since CSD is always a macroscopic, volume-based

measure (Nicholson, 1973), the spatial scale and the

physical model in which Eq. (3) is cast will affect

the fidelity of the CSD as a measure of the strength of the

underlying neuronal generator. At the lowest scale, that is,

on the level of scalp-recorded EEG topographies, surface

Laplacian CSD estimates are indices of radial current flow

into the skull from (normal to) the underlying neural tissue

(i.e. radial current flow; Pernier et al., 1988; also see Yao,

2002, and Oostendorp and Oosterom, 1996, for the

relationship between the surface Laplacian and the normal

derivative of the potential gradient). Even at this macro-

scopic scale, surface Laplacians allow cautious inferences

about neuronal generators. At the next, intermediate scale,

the same topographies may be described using inverse

models to infer effective intracranial generators (e.g.

equivalent current dipoles, Scherg and von Cramen, 1985,

1986; LORETA, Pascual-Marqui et al., 1994). Although

these (non-unique) solutions concisely simplify EEG

topographies, the plausibility of putative generators must

be evaluated in the context of a realistic physiology (e.g.

dipolar generators should be oriented normal to the cortical

surface). Finally, at a microscopic scale, CSD profiles

derived from intracranial EEG recordings have the unique

capacity to dissect the ‘cortical dipole’ (Lorente de No,

1947; Mitzdorf, 1985) into physiologically meaningful

patterns of sublaminar sources and sinks (e.g. Buzsaki et

al., 1986; Holsheimer, 1987; Kraut et al., 1985; Mitzdorf,

1985; Nicholson and Freeman, 1975; Schroeder et al.,

1992). However, intracranial CSD is limited by its invasive

nature, being largely restricted to animal models, which

may explain why the relevance of intracranial CSD features

to the scalp-recorded EEG may not be obvious to basic and

clinically-oriented human electrophysiology.

The different CSD measurement scales and models

collectively provide a powerful framework for under-

standing the EEG. Notably, experience obtained from one

scale may provide insights for interpreting data at another.

For example, evidence from a surface Laplacian CSD

topography, or from a representation of it as an equivalent
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dipole, may both support inferences regarding a particular

intracranial generator if, and only if, the generator conforms

to known neuroanatomy and physiology (e.g. the location,

orientation, time course and physiological significance is

appropriate for the region in question). Dipole solutions

have advantages if a small number of generators are

adequate to explain the data, but the physiological

plausibility of each identified source must be supported

independently. Moreover, if an inverse solution indicates an

equivalent dipole with an implausible location or orien-

tation, the most appropriate and concise simplification is a

CSD scalp topography. One example of this is when

sharply-localized irregularities in the topography arise from

partial field closure (i.e. most of the activity is locally

cancelled due to the pairing of dipolar activity, with dipole

orientations in opposite directions; cf. Fig. 3 of Tenke et al.,

1993, for an intracranial CSD analog).

1.3. EEG power spectra

1.3.1. Signal and noise in EEG power spectrum

topographies

Fourier transformation reversibly maps real-valued, time

series data into complex-valued, frequency spectra. Even

though linear system properties can be preserved in the

frequency domain, EEG rhythms have historically been

studied using non-linear simplifications of these methods

derived from statistical, random noise models (e.g. Bendat

and Piersol, 1971; Gasser and Molinari, 1996; Pivik et al.,

1993; Srinivasan et al., 1998; Tenke, 1986). These measures

emphasize the average variance (mean squared amplitude)

of a signal, without regard to spatial or temporal properties.

By Parseval’s theorem, total power is identical for temporal

and spectral functions comprising a Fourier transform pair.

While neuronal contributions to the EEG are subject to

linear superposition based on volume conduction, physio-

logical (non-signal) and technical artifacts (noise) also share

these properties which can help to disentangle their sources

from the EEG of interest. For example, the spatial

topography of eye movement or blink artifacts is consistent

with volume conduction across the scalp from the eyes,

justifying the use of linear regression methods to remove or

attenuate them (Gratton et al., 1983; Semlitsch et al., 1986;

Woestenburg et al., 1983). Likewise, muscle artifacts may

overlap EEG alpha frequencies across frontal sites (e.g.

Davidson, 1988; Goncharova et al., 2003; Lee and

Buchsbaum, 1987), but their topographic and frequency

signatures, being generally localized to the vicinity of

specific muscles (e.g. frontalis and temporalis) and

predominantly high-frequency in content, will allow their

classification as artifacts. However, none of these identify-

ing topographic properties are preserved when using power

spectra, which distort the linear relationship between signals

by expressing them as mean squares. This problem is further

exacerbated by the use of a subsequent logarithmic

transformation (Bendat and Piersol, 1971; Pivik et al.,
1993; Tenke, 1986), which can exaggerate extremely small,

but topographically reproducible errors in areas with low

EEG power. It is therefore not surprising that EEG alpha

asymmetries are more stable over posterior regions, where

alpha is prominent and well defined (e.g. Allen et al., 2004a,

b; Debener et al., 2000a).

1.3.2. Impact of the recording reference

EEG scalp topographies are invariably affected by the

choice of a recording reference. While the choice of a ‘bad’

reference may be obvious for a particular topography (e.g. a

frontal or central reference to measure an auditory N100 peak

(Simson et al., 1976; Näätänen and Picton, 1987), no

physically realizable recording reference scheme is immune

to the reference problem, including the (montage-dependent)

average reference. The reference problem is further exacer-

bated when the EEG is quantified using power spectra (Pivik

et al., 1993), which may suffer topographic distortion or the

reversal of hemispheric asymmetries (e.g. Hagemann et al.,

2001). Despite the widespread recognition of these concerns,

the implications of the choice of a recording reference on EEG

power spectrum topographies are often misunderstood.

Fig. 1 shows a heuristic illustration of the recording

reference problem for EEG alpha. In this example, a

sinusoidal waveform has a posterior (planar) topography

that varies linearly in amplitude over space. Peak amplitude

increases from 0 to C3 mV (Fpz to Pz; solid lines in Fig. 1A,

negativity up), with identical activity at lateral and midline

sites (e.g., P3ZPzZP4; C3ZCzZC4), except for an

asymmetry imposed at midfrontal sites (left-smaller-than-

right hemisphere; F3Z0.5Fz!F4Z1.5Fz). After rereferen-

cing all waveforms to Cz (dashed lines in Fig. 1A), the

asymmetry appears to reverse (the 1808 phase-shifted

waveforms are greater at F3 than F4), although the difference

waveforms are identical at all sites because they are linearly

related (Fig. 1B). In contrast, even though the absolute value

transformation produces an identical frontal asymmetry

(Fig. 1C), the difference waveforms vary across the

topography because the linear, spatial dependency of the

original waveforms is lost (Fig. 1D). Similar properties may

be shown for power (i.e. squared amplitude), and are also

preserved in the frequency domain (i.e. power spectra).

Acknowledging these problems, some investigators

routinely compare findings using two or more reference

schemes (e.g. Bruder et al., 1997; Henriques and Davidson,

1990; Reid et al., 1998; Shankman et al., 2005), based on the

implicit rationale that findings are more likely to be valid if

results are consistent for various reference schemes.

However, there is no a priori assurance that a replication

based on any equally arbitrary reference will improve the

validity and/or interpretability of the reported findings.

1.3.3. Spectral analysis of CSD waveforms

Power spectra computed from CSD waveforms provide a

reference-free representation of the current generators

underlying the EEG, as well as a concise description of EEG



Fig. 1. (A) Arbitrary sinusoidal signal (solid lines) with an amplitude topography varying linearly along the midline from zero at FPz to a maximum peak of

3 mV at Pz. Amplitudes of the sinusoid at lateral locations are identical to those at the midline, with the exception of an imposed asymmetry at F3/4 (right

greater than left). Rereferencing the sinusoid to Cz reverses the frontal asymmetry (dashed lines). (B) Differences of waveforms shown in A. Because

rereferencing is a linear operation, differences between the original and the rereferenced signals are identical at all sites. (C) When the waveforms shown in A

are rectified, the transformed waveforms maintain properties of the original sinusoidal signal, including the reversed asymmetry at F3/4. (D) The difference

between rectified waveforms changes considerably across the montage, because rectification is not a linear transformation.
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variance after the removal of volume-conducted activity

(Hagemann, 2004; Nunez, 1990; Nunez et al., 1994; Pivik

et al., 1993)1. CSD alpha spectrum topographies are consistent

with those of posterior EEG alpha, including similar

hemispheric asymmetries (Hagemann, 2004). CSD power

spectra have also been successfully used to study task-related

EEG changes (e.g. event-related synchronization and desyn-

chronization; Babiloni et al., 2004). Although CSDs are more

sensitive to higher spatial frequencies (e.g. Srinivasan et al.,

1998), and may be somewhat less stable than EEG

topographies (Burgess and Gruzelier, 1997), even low-

resolution CSD estimates may nevertheless be well-suited to

represent important properties of generators underlying the

surface EEG (e.g. Babiloni et al., 2001, 2002; Kayser and

Tenke, in press b; Tenke et al., 1998, 1993).
1 It must be noted that measures based on a Laplacian estimate computed

from an EEG power spectrum topography have no formal relationship to

Eq. (3), due to the non-linearity of the power spectrum. This criticism also

applies to computational simplifications such as the local Hjorth algorithm

(Hjorth, 1975), which reduces the Laplacian estimate to a selective, signed

sum of local difference potentials (i.e. first derivative estimates). Measures

using such approaches (e.g. ‘cordance’; Leuchter et al., 1994; Cook et al.,

1998) retain the edge-detecting properties of the algorithm, but without

regard to the biophysics of volume conduction.
1.4. Frequency principal components analysis (fPCA)

A final limitation of standard quantitative EEG methods

is the reliance upon a priori frequency bands over which

signal estimates are integrated or averaged. Using principal

components analysis (PCA) and related methods, pioneer-

ing investigations of the spectral structure of EEG variance

verified the inadequacy of a single frequency band to

characterize alpha activity (e.g. Andresen, 1993; Andresen

et al., 1984). Consequently, it is common for investigators to

adjust traditional frequency bands or to divide them into

subbands so as to assure that spectral peaks are adequately

represented, rather than the peaks’ rising or falling slopes

(Bruder et al., 1997; Davidson and Fox, 1989; Shankman

et al., 2005). However, rectangular frequency bands are

nevertheless inadequate to accurately quantify overlapping

spectral waveforms, a problem precisely comparable to the

oversimplification of event-related potential (ERP) com-

ponents using time windows (e.g. Donchin, 1966; Donchin

and Heffley, 1978; Glaser and Ruchkin, 1976; Kayser and

Tenke, 2003, 2005).

Although PCA has been used with EEG spectra, this

methodology never achieved the degree of acceptance that it

had for ERPs, and remained more a descriptive than analytic

tool (e.g. Andresen, 1993; Arruda et al., 1996; Duffy et al.,



C.E. Tenke, J. Kayser / Clinical Neurophysiology 116 (2005) 2826–28462830
1994). Moreover, the various methodological debates

among ERP researchers about the usefulness of PCA (e.g.

Wood and McCarthy, 1984; see Kayser and Tenke, 2005,

for a brief historical overview) may have dissuaded many in

the EEG community from advocating what was viewed as

an unproven and counterintuitive technique. However, the

application of PCA to ERPs has been shaped by the

construct of an ERP ‘component’ within the time domain,

which requires an identifiable neuroanatomical origin (i.e.

characteristic topography) having a distinct time course (i.e.

temporal pattern) that can be shown to vary as function of

experimental manipulation (e.g. Kayser and Tenke, 2003,

2005; Picton et al., 2000). By analogy, a spectral

‘component’ would also require a characteristic topography

with a distinct spectral shape (i.e. frequency pattern) that

can be experimentally manipulated. Under such a definition,

the phenomenon of alpha blocking could be considered a

rudimentary spectral component (frequency specificity 8–

13 Hz, posterior topography, responsive to eyes closed/

open). In contrast, the concept of classical frequency bands

explicitly meets only one these requirements (i.e. a

frequency range), relieving qEEG researchers from the

obligation to characterize the other two (i.e. topographic

specificity and condition-dependency). In the absence of an

explicit construct to guide the use of spectral methodology,

the implications of a spatially-undersampled montage or the

lack of an experimental condition verifying the prominence

or responsivity of a given spectral measure may not appear

to be as relevant.

The recent common availability of more complete

recording montages, exceeding the 10–20 standard, and

the easy access to considerable computing power has

resulted in a renewed interest in PCA for ERPs (Kayser and

Tenke, 2005). Analogous to temporal ERP data (Kayser and

Tenke, 2003), PCA methodology can overcome the

limitations of rectangular spectral windows by defining

spectral component waveforms that conform to the

underlying data. Whereas treatment-related variance in

ERPs may be observed in the amplitude variations of

individual components, the simplest analog for resting EEG

spectra is the difference in alpha between eyes-open and

eyes-closed periods. An additional shift in emphasis from

using conventional signal variance (i.e. power spectra) to

amplitude spectra and their unique topographies may further

facilitate inferences about the neurophysiological substrate

of spectral components, if they exist. Preliminary results

with this new approach, which has been termed frequency

PCA (fPCA; Kayser et al., 2000) in analogy to the terms

temporal and spatial PCA used for ERP data analysis, have

been promising (Debener et al., 2000b; Kayser et al., 2000).

The argument that solutions based on CSD amplitude

spectra are more direct reflections of neural activity than

those based on CSD power spectra is not an empirical

finding, but rather a deduction from the following facts: (1)

the relationship between the grossly recorded EEG and its

underlying neuronal current generators may be expressed
using a linear, volume-conduction model (Eq. (1)); (2) CSD

is a linear, reference-free transformation; (3) Fourier

transformation is also a linear transformation; (4) a power

transformation is not linearly related to amplitude (i.e. its

squared amplitude); (5) PCA preserves the linear properties,

since it also represents a linear solution. Given all these

facts, amplitude measures are simply more directly

interpretable as activity from localizable neuronal

generators.

In the present study, we used fPCA to extract concise,

data-driven spectral components of relevance to the

underlying neuronal generators of the resting EEG in a

large sample of human adults. To preserve information

about the current generators underlying the EEG, reference-

free CSD fPCA solutions were computed to explore their

utility for both EEG description and artifact removal, their

relationship to standard spectral bands, their stability across

samples, and their physiological interpretability. A second-

ary goal was to directly compare CSD fPCA solutions with

nose-referenced EEG fPCA solutions based on common

spectral transformations. In accordance with convention,

Fourier spectra of EEG and CSD epochs were squared and

averaged to form power spectra, which were subsequently

simplified as root mean squared (RMS) amplitude spectra,

and converted to log power spectra as the de facto standard.

Amplitude, power, and log power spectra of CSD and EEG

data were submitted to fPCA, and solutions were evaluated

using the concept of a spectral component, with a special

emphasis on the alpha rhythm.
2. Methods

2.1. Participants

Resting EEG data collected from 145 adults, pooled

across two separate studies (73 male [50.3%]; age 18–64

years [MZ34.0; SDZ9.5]; ethnicity: 92 Caucasian, 21

African-American, 32 mixed or other ethnic background),

were reanalyzed for the current study. Participants consisted

of 51 healthy adults and 94 clinically depressed, unmedi-

cated outpatients (for screening details, see Bruder et al.,

2002). Individuals were excluded if they had a history of

neurological or substance abuse disorder, and were paid

US$30 for participation. As indicated by the Edinburgh

Handedness Inventory laterality quotient (LQ; Oldfield,

1971), participants were mixed in handedness (MZ67.1,

SDZ49.6; nZ99, strongly right-handed, LQO70; nZ13,

left-handed, LQ!0). The study was approved by the

institutional review board, and participation was voluntary.

2.2. EEG recording and preprocessing methods

Scalp EEG was recorded from 13 lateral, homologous

pairs of electrodes (FP1/2; F3/4; F7/8; FC5/6; FT9/10; C3/4;

T7/8; CP5/6; TP9/10; P3/4; P7/8; P9/10; O1/2) and from
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four midline electrodes (Fz; Cz; Pz; Oz) using standard 10–

20-system placements (Pivik et al., 1993) with an electrode

cap (Electro Cap International, Inc.) and a nose reference.

Electrodes at supra- and infra-orbital sites surrounding the

right eye recorded blinks and vertical eye movements

(bipolar), while electrodes at right and left outer canthi

recorded horizontal eye movements (bipolar). All electrodes

were tin, with impedances below 5 kU. EEG was recorded

using a Grass Neurodata system at a gain of 10k (5k and

2.5k for horizontal and vertical eye channels, respectively),

with a bandpass of 0.1–30 Hz. Only recordings which were

free of electrolyte bridges between electrodes were included

(Tenke and Kayser, 2001).

Continuous EEG were collected with a PC-based EEG

acquisition system (Neuroscan) and sampled at 200 Hz

during four 2-min time periods (order of eyes-open [O] and

eyes-closed [C] were counterbalanced as OCCO or COOC

across subjects). Subjects were instructed to remain relaxed,

but awake, and to avoid eye or body movements during the

recording periods. During the eyes-open periods, subjects

were also instructed to maintain their focus on a pair of

crosshairs in the center of a computer screen. The

continuous EEG data were segmented into 1.28-s epochs

(50% overlap; 0.78 Hz frequency resolution). Epochs were

rejected if amplifiers clipped. Offset-corrected EEG epochs

contaminated by amplifier drift, blinks, lateral eye move-

ments, muscle activity or movement-related artifacts were

then excluded from analysis using a rejection criterion of C
100 mV on any channel, followed by artifacting under visual

guidance using a semi-automated procedure. No additional

effort was made to reduce or eliminate residual eye and

muscle artifact by linear regression approaches.
2.3. CSD computation

Epoched CSD waveforms were computed for each

accepted epoch using the spherical spline surface Laplacian

method (lambdaZ10K5; 50 iterations; mZ4) of Perrin et al.

(1989, 1990).2 These parameters have previously been

shown to result in CSD waveforms similar to those of the

local Hjorth Laplacian for electrodes near the center of this

recording montage (Tenke et al., 1998). The reference

electrode was included in the montage at a fixed location on

the sphere to improve frontal topography, and to provide

additional opportunity to detect generators that volume-

conduct widely across the recording montage (Junghöfer

et al., 1999; Kayser and Tenke, in press a).
2 CSD waveforms were computed using CSD Converter (developed by

JK), a program capable of rapidly transforming continuous, epoched, and

averaged data for any EEG montage using a spherical model. The

computational engine will be provided as generic MatLab source code in a

related report (Kayser and Tenke, in press a). All topographies and

animations were created using the same spherical spline interpolation

suggested by Perrin et al. (1989, 1990), but were expressed as mV/m2 to

produce values in the same order of magnitude as the EEG.
2.4. Spectral analysis and fPCA methods

To determine common sources of variance in the spectral

data, averaged spectra were submitted to fPCA derived from

the covariance matrix, followed by unscaled Varimax

rotation (Kayser and Tenke, 2003). For ERPs, this approach

produces distinctive, orthogonal factor loadings and

weighting coefficients, which efficiently describes the

variance contributions of temporally and spatially overlap-

ping ERP components. The number of factors extracted and

retained prior to Varimax rotation was not restricted (e.g.

using a Scree test or noise variance; cf. Cattell, 1966; Horn,

1965; Kaiser, 1960), which stabilizes meaningful com-

ponents, while identifying and removing noise-related

components (Kayser and Tenke, 2003). Although several

limitations of PCA techniques (e.g. misallocation of

variance resulting from component jitter or overlap) are

well known and require caution, peak or window-based

measures are subject to the very same limitations (e.g.

Achim and Marcantoni, 1997; Beauducel and Debener,

2003; Chapman and McCrary, 1995; Dien, 1998; Möcks

and Verleger, 1986; Wood and McCarthy, 1984). While it is

possible that an oblique rotation might provide a simpler

solution set, our choice of an orthogonal rotation is

nevertheless parsimonious, in that it preserves the overall

independence of the factors (Kayser and Tenke, 2005).

By analogy with ERP methods, fPCA factor scores can

be interpreted as weighted frequency band amplitudes if the

associated factor loadings are clustered in a narrow

frequency range and lack significant secondary loadings at

different frequencies (Debener et al., 2000b; Kayser et al.,

2000). The correspondence between known EEG rhythms

(most notably alpha) and fPCA factors, in terms of spectral

tuning, topography and treatment dependency (i.e., eyes

closed vs. eyes open), allows the identification of

physiologically-relevant factors for further analysis. The

same properties effectively define the concept of an ERP

component for temporal data (Kayser and Tenke, 2005),

which may, as some have argued, be inseparably linked to

the topography defined by its underlying neuronal gen-

erators (Spencer et al., 1999, 2001). CSD fPCA solutions are

therefore more appropriate for characterizing spectral

components, since CSD provides a more direct measure of

the underlying neuronal activity than EEG.

The power spectrum is a methodological standard for

describing the spectral variance properties of a time-series

(e.g. Bendat and Piersol, 1971). Comparisons between EEG

power spectra typically use a subsequent logarithmic

transformation as a ‘normalizing’ procedure (Pivik et al.,

1993; Tenke, 1986). However, in two independent

preliminary reports, both using nose-referenced EEG data

recorded from right-handed adults (NZ29, 30-electrode

montage, Kayser et al., 2000; NZ138, 29-electrode

montage, Debener et al., 2000b), we reasoned that

amplitude scaling would restore proportionality to the

amplitude of an underlying sinusoid (i.e. RMS amplitude),
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while preserving standard EEG methods that rely on power

spectra (Pivik et al., 1993). For both of these two data sets,

fPCA produced interpretable solutions that separated

identifiable sources of artifact from the EEG, and included

multiple treatment-dependent alpha factors. Additional

support for focusing on CSD amplitude as a measure of

neuronal activity is provided by Logothetis et al. (2001),

who reported that the BOLD fMRI response of visual cortex

in monkeys to checkerboard stimuli is correlated with the

local field potential, which is, in turn, reflected by the

intracranial CSD (Logothetis, 2003). In the present study,

we replicated and extended these preliminary EEG findings

by comparing EEG and CSD spectra for three different

quantification procedures. Mean power spectra were

computed separately for epoched EEG and CSD data

(1.28-s epochs; 0.78 Hz resolution; 50% epoch overlap;

50% Hanning window) for each participant (145), electrode

(31), and condition (eyes open vs. eyes closed). The impact

of scaling method was then examined by applying a

logarithmic3 or amplitude (square root of power) trans-

formation to the power spectrum averages, and submitting

each to fPCA using a MatLab function (appendix of Kayser

and Tenke, 2003) that emulates the PCA algorithms used by

BMDP statistical software (program 4M; Dixon, 1992).

Mean EEG spectra (0–77.2 Hz; 100 frequency pointsZ100

variables) were submitted to unrestricted covariance-based

PCA, using electrodes (30) !conditions (2) !participants

(145) as 8700 cases, followed by unscaled Varimax rotation

(Kayser and Tenke, 2003; also see Donchin and Heffley,

1978; Glaser and Ruchkin, 1976). For CSD data, the nose

reference electrode was also included (31 electrodes!2

conditions!145 participantsZ8990 cases).4

The distinctiveness and interpretability of factor loadings

and averaged factor score topographies produced by each

scaling method were compared and contrasted (see also

footnote 1). By analogy to a temporal PCA, only

physiologically meaningful fPCA components were con-

sidered (Kayser and Tenke, 2003). Since alpha activity is

the most robust and stable physiological pattern in the

resting EEG, only the most distinctive alpha factors were

further explored in this study.

The existence of a secondary topography on the frontal

midline for one CSD alpha factor made it impossible to
3 Since a covariance-based PCA of log power spectra eliminates the

proportionality of the measure (i.e. the factor scores) at different recording

sites by removing the grand mean, differences no longer represent

logarithms of ratios. Although this consideration would be of relevance

for statistical analyses of the factor scores, it is irrelevant for the present

purpose of identifying unique variance contributions in the log-transformed

data.
4 Since the logarithm of zero is undefined, the reference electrode was

excluded for all EEG fPCA solutions to allow a direct comparison of the

impact of scaling method (i.e. power, log power, and amplitude spectra).

However, a comparison of the first eight rotated factor loadings for EEG

power spectrum solutions with (31 electrodes) or without (30 electrodes)

the (zero-valued) reference were virtually identical.
confidently infer an underlying neuronal generator

configuration without additional information. For this

reason, the possibility of concurrent activity in multiple

regions was evaluated by comparing factor score

topographies for subgroups based on the prominence of

the secondary focus. Because it is not possible to

distinguish between statistically independent and phase-

locked activity in any of the spectral averages, the

association between alpha waveforms in primary and

secondary regions was directly evaluated in the time

domain. For the purposes of this preliminary report,

evidence for phase-locking was derived from individual

time epochs showing strong rhythmicity, and from the

corresponding coherence spectra.
3. Results

3.1. Comparison of averaged EEG and CSD power spectra

Nose-referenced EEG power spectra (Fig. 2A) were

characterized by a prominent, condition-dependent alpha

peak at posterior sites that was superimposed on low

frequency activity at all electrodes (the ‘peak’ at 0.8 Hz is a

result of subtracting the epoch mean). Alpha was broadly

distributed, with regional variations in peak frequency and

maximal amplitude at the parietal midline (Fig. 2C).

Condition-dependent differences paralleled the topography

of alpha (Fig. 2A), but were measurable even at the frontal

midline (Fig. 2E).

Reference-independent CSD power spectra were also

characterized by prominent, condition-dependent alpha

peaks with a posterior topography, and the shape of the

alpha peak varied considerably across the topography

(Fig. 2B and D). However, in contrast to EEG power

spectra, alpha activity identified in CSD power spectra had a

more restricted topography that was more easily dis-

tinguishable from the superimposed low frequency activity.

3.2. Comparison of EEG and CSD fPCA solutions

3.2.1. fPCA solution for EEG power spectra

Fig. 3A summarizes the fPCA solution derived from

EEG power spectra. A unique color is used for each of the

first eight factor loading waveforms. For example, the factor

with the highest loading peak is plotted as a black

waveform, and its prominent peak at approximately 10 Hz

is indicated by a black line connecting the corresponding

pair of factor score topographies to the 10-Hz value on the

frequency axis (i.e. the third pair from the right; 22.1%

variance; 10.2 Hz). Factor score topographies are arranged

according to peak frequency in order to facilitate their

correspondence to loading peaks (i.e., the sequence of maps

is identical to the sequence of waveform peaks). The inset

shows the same waveforms, but using an enhanced

frequency resolution to accentuate alpha activity. Table 1



Fig. 2. Grand average power spectra of nose-referenced EEG (A) and reference-free CSD (B) in 145 adults at all 31 recording sites (including the nose tip recording

reference) for eyes closed (black dashed lines) and eyes open (solid gray lines) at rest. Enlarged spectra directly compare EEG (C and E) and CSD (D and F) at specific

sites: Pz (dashed) and P8 (solid) for eyes closed only (C and D); site Fz for eyes closed (dashed) and eyes open (solid) conditions (E and F).

C.E. Tenke, J. Kayser / Clinical Neurophysiology 116 (2005) 2826–2846 2833
lists and identifies all eight factors. For example, the first

factor is identified as ‘alpha’, with a medial/posterior

topography that is most prominent for the eyes-closed

condition.

As summarized in Table 1, six factors accounted for over

90% of the variance of the EEG power spectra. All six were

largest (greater factor scores) for eyes-closed vs. eyes-open

recording periods, and five contributed directly to alpha

activity (Fig. 3A). Although four of the five alpha factors

showed a posterior topography, the topography of the lowest

frequency factor (7.8 Hz peak) was more anterior and

largest on the midline (i.e. from Fz-to-Pz). The remaining

factor was consistent with eye artifact (0.8 Hz peak,
frontopolar topography), despite a secondary topography

along the midline and a secondary peak in alpha (Fig. 3A,

inset of loadings showing alpha). Overall, the EEG power

spectrum fPCA yielded multiple alpha factors with similar

or identical peak frequencies, and no evidence of high

frequency activity (Fig. 3A).

3.2.2. fPCA solution for CSD power spectra

As shown in Table 1, fPCA solutions for CSD power

spectra were similar to those for EEG power spectra,

producing six factors that accounted for over 90% of the

variance of the spectra, five of which were most prominent

for eyes-closed recording periods. However, in contrast to



Fig. 3. Comparison of frequency Principal Components Analyses (fPCA) derived from nose-referenced (EEG) and reference-free (CSD) power (A and B), log

power (C and D), or amplitude (E and F) spectra, using unrestricted, covariance-based, and Varimax-rotated factor solutions (Kayser and Tenke, 2003). The

factor loadings for the first eight components extracted are plotted as overlaid frequency spectra (frequency range 0–77.3 Hz) above their associated mean

factor score topographies. Insets in A, B, E, and F show enlarged representations of factor loadings for frequencies encompassing the alpha range (8–13 Hz).

Mean factor score topographies (NZ145) are plotted separately for eyes closed (top rows) and eyes open (bottom rows) conditions. Topographies were sorted

according to the factor loadings’ peak frequencies (left to right), which are indicated along with the accounted variance above the topographic maps. Black dots

indicate the spherical positions of the recording sites (nose at top). All topographic maps are 2D-representations of spherical spline surface interpolations

(Perrin et al., 1989, 1990) derived from the mean factors scores available for each recording site. Note the larger scale in C for factor score topographies of EEG

log power spectra (G1.75) as compared to the other five solutions (G1.5). Colored lines below maps pointing to the factor loadings’ peak frequencies on the

abscissae have the same color as the corresponding factors in the factor loadings plot.
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EEG power spectra, the highest-variance CSD component

consisted of a simpler eye artifact factor (0.8 Hz, 30.1%),

with neither a secondary loading nor a secondary midline

topography (see Fig. 3B). All five alpha factors had a

posterior topography, but only factors with the lowest peak

frequencies (7.8, 8.6, and 9.4 Hz) included lateral (P7/P8)

and inferior (P9/P10) parietal sites. Only one alpha factor
(7.8 Hz) included a secondary midline topography.

Additionally, low variance factors (!2%) reflected muscle

(20.3 Hz; broad, low amplitude component) and electrical

line (60.2 Hz) artifacts. Overall, the fPCA solution for CSD

power spectra produced factors with greater topographic

and spectral specificity than the solution for EEG power

spectra.



Fig. 3 (continued)
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3.2.3. fPCA solution for EEG log power spectra

The EEG log power spectrum fPCA solution differed

substantially from both power spectrum solutions (Table 1;

Fig. 3C). Although five factors accounted for 90% of the

variance of these waveforms, only one represented EEG

alpha (9.4 Hz; 21.2% variance). This factor was greatest for

eyes-closed periods, and had a broad, posterior topography.

Although eye artifact was not represented by any of these

factors, the highest variance component represented muscle

artifact (75.0 Hz, 56.0%, greatest for eyes open). A beta

factor (26.6 Hz) overlapped the time course of the muscle

artifact factor and extended its topography medially (central

and frontopolar, greatest for eyes open), suggesting that it,

also, may represent muscle artifact. The remaining two
factors that accounted for more than 2.5% of the variance

represented line (60.2 Hz) and CRT (70.3 Hz) artifacts.

Thus, the EEG log power solution produced the undesirable

outcome of fewer high-variance factors, broader spectral

peaks, and greater loadings at high frequencies compared

with the EEG power spectra solution.

3.2.4. fPCA solution for CSD log power spectra

The differences between the CSD fPCA solution for log

power spectra and solutions for the other two spectra were

similar to those described for EEG fPCA. Only one of the

factors represented alpha activity (10.2 Hz; Table 1 and

Fig. 3D), and muscle artifact was reflected by a high

frequency factor (64.1 Hz, greatest for eyes-open, maximal



Fig. 3 (continued)

C.E. Tenke, J. Kayser / Clinical Neurophysiology 116 (2005) 2826–28462836
near facial musculature). A second beta factor (23.4 Hz)

was also extracted with an eyes-closed maximum that

effectively extended the peripheral topography of the

muscle artifact factor into frontal regions. Only four factors

were required to account for 90% of the variance, the last of

which was an eye artifact factor (0.8 Hz; maximum at

frontopolar and nose electrodes).
3.2.5. fPCA solution for EEG amplitude spectra

Seven factors accounted for 90% of the variance of the

EEG amplitude spectrum (Table 1, Fig. 3E). Five of these

factors contributed to alpha (i.e. see loading inset in

Fig. 3E). The three high-frequency alpha factors (9.4,

10.2, and 10.9 Hz) had posterior topographies and were
greatest for eyes-closed periods, while the lowest frequency

alpha factor (7.8 Hz) had a midline frontocentral topogra-

phy. The last of these factors also had low variance (8.6 Hz,

2.8%), a loading that included negative values within the

alpha band, no condition dependency, and a lateral

topography (Fig. 3E), suggesting that it may be a

frequency-shifting ‘correction’ factor, rather than an

independent alpha factor. The remaining two factors

represented eye (0.8 Hz, 8.2%; included a secondary alpha

loading and midline topography) and muscle artifact

(28.9 Hz, 3.7%). When compared to EEG power and EEG

log power solutions (Fig. 3A and C), the fPCA solution for

EEG amplitude spectra (Fig. 3E) was intermediate in the

density of spectral peaks (spacing of colored lines along
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Fig. 4. Averaged topographies of the most prominent three alpha factors

derived from CSD amplitude spectra for eyes-open and eyes-closed

conditions. Topographies are shown for two separate studies (A), as well as

for healthy controls and depressed patients averaged across the studies (B).

Also shown are the mean topographies for three groups established by the

amplitude of the 8.6-Hz factor at electrode Fz for eyes closed (C). These

low, medium, and high groups differed in CSD factor amplitude not only at

midline-frontal sites, but also at posterior sites; however, despite

differences in amplitude, factor score topographies for eyes closed were

similar for all three groups. Note that although scale resolution is the same,

the absolute offset of each scale accommodates the group differences in

amplitude.
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frequency axis) and in the number of alpha peaks

(5 vs. 6 or 4).

3.2.6.. fPCA solutions for CSD amplitude spectra

The CSD amplitude spectrum fPCA solution produced

six factors accounting for 90% of the variance (Table 1,

Fig. 3F). Three of these factors (8.6, 9.4, and 10.9 Hz) were

alpha factors, including the highest variance factor. All

three alpha factors had posterior topographies, and were

greatest for eyes-closed periods. Eye artifact (0.8 Hz,

16.6%) and muscle artifact factors (26.6 Hz, 20.0%) were

both more prominent for this fPCA solution than for either

the CSD power spectrum or the EEG amplitude spectrum.

The sixth factor was a low variance factor reflecting line

artifact (60.2 Hz, 2.0%).

Although the loading peak for the most prominent factor

was within the traditional alpha band (8.6 Hz, 26.5%), the

rising phase of the waveform included a substantial

contribution to the classical theta band (4–8 Hz, Fig. 3F).

This factor had a bilateral posterior/inferior topography that

was most prominent during eyes-closed periods, as well as a

secondary topography extending to the frontal midline, but

falling off sharply at frontocentral locations displaced from

the midline. In contrast, the high-frequency alpha factor

(10.9 Hz, 18.1%) was distinguishable by its medial parietal

topography, its steep topographic fall-off at anterior sites,

and its incomplete blockade for eyes-open periods.

Compared to the high- and low-frequency alpha factors,

the remaining alpha factor had a narrower bandwidth at an

intermediate frequency (9.4 Hz) than the other two alpha

factors (inset of Fig. 3F), with a parietal topography that was

similar to that of the high alpha factor, but less sharply

localized to sites near the midline.

3.3. fPCA alpha factors from CSD amplitude spectra:

reproducibility across groups

All three of the alpha factors from the CSD amplitude fPCA

solution showed reproducible, condition-dependent, posterior

topographies across independent samples (Fig. 4A) and

groups (healthy controls and depressed patients, Fig. 4B).

However, only the low alpha/theta factor (8.6 Hz) showed a

secondary, anterior topography, notably including the frontal

midline (electrode Fz). The consistency of these topographies

suggests that they represent a stable, physiological process,

rather than merely fortuitous variance allocation patterns.

Although the posterior alpha factor topographies are

consistent with classical descriptions of the resting alpha

rhythm, the existence of a factor straddling the alpha and

theta bands poses empirical and theoretical problems.

Specifically, it may be questioned whether the identification

of the factor as alpha (or theta) is appropriate. Instead, it

may be argued that the factor represents at least two

distinctive, but unrelated, patterns of activity that vary

across subjects, yet are sufficiently similar to be extracted as

a single (erroneous) component. In fact, task-specific theta
is known to have a midline frontal topography. Likewise, it

could be argued that the factor’s inferior/posterior topo-

graphy merely reflects the residual from a particularly broad

posterior alpha topography. Moreover, no evidence has been

shown to suggest that both topographic foci covary in

amplitude. To evaluate the feasibility of such an association,

participants were evenly divided into three groups based

exclusively on the size of the 8.6-Hz CSD amplitude

spectrum factor at electrode Fz for eyes closed, and

corresponding topographies for the high-, medium-, and

low-Fz subjects were computed (ns were 49, 48, and 48,

respectively). Despite marked quantitative differences in

factor amplitude, all three groups showed similar topo-

graphies (Fig. 4C): (1) a primary posterior/inferior

topography; (2) relatively greater amplitude at Fz than at
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other (i.e. not midline) frontocentral sites; (3) markedly

greater amplitude for eyes-closed than eyes-open.

The association between the frontal and posterior foci

suggests the possibility of an even stronger association: a

direct linkage between the activity at the two widely separated

sites. One possibility is that concurrent activity at the two sites

may result from highly synchronized (coherent) processes,

such as waveforms that are precisely in-phase (0o: current

sources or sinks at the same time in both regions), out of phase

(180o: sinks in one corresponding to sources in the other), or at

another fixed phase angle. At the other extreme, it is possible

that the signals at the two sites are phase independent (i.e.

incoherent), but covary in amplitude alone. The likelihood of

one or the other of these two extremes can have major

implications for geometric, physiological, and statistical

interpretations of the underlying neuronal generators.

Although an exhaustive description of these factors is

beyond the scope of the present paper, it was reasoned that

the most restrictive linkage between waveforms (i.e.

constant phase angle) is necessary to suggest that both

foci reflect similar patterns of spectral activity. To this end,

we reviewed the epoched, filtered (15 Hz low pass) CSD

data for subjects showing the greatest factor amplitude at Fz,

adding as a further restriction that rhythmic activity should

be visible in individual CSD time epochs. Fig. 5A shows the

characteristics of a representative CSD time epoch with

these properties. The corresponding amplitude spectrum for

this epoch was sharply-tuned at 8.6 Hz, with a topography

reminiscent of the corresponding fPCA factor (Fig. 5B).

CSD alpha waveforms at midline frontal (Fz) and inferior/

posterior (P8) sites were closely time-locked and precisely

out of phase throughout this epoch (i.e. sources at Fz

correspond to sinks at P8, and visa versa).5 The wave-by-

wave topography of this linkage is also evident from

sequential series of CSD maps corresponding to successive

peaks (sinks, top series of maps) and troughs (sources,

bottom series of maps) at Fz.6 A local Hjorth Laplacian

produced the same result, indicating that the relationship

was independent of the spherical model. Thus, a common

alpha generator pattern can produce synchronized currents

at frontal and inferior foci.
4. Discussion

This study evaluated the effectiveness of frequency PCA,

which was performed on EEG amplitude, power, or log-

transformed power spectra derived from nose-referenced
5 It should be noted that for this strongly rhythmic epoch, the pairwise

coherence spectrum for Fz versus all other electrodes was also maximal at

P8, indicating a stable phase relationship between the two sites.
6 An animated comparison of the corresponding EEG and CSD

topographies during this epoch (i.e. for each time point) is posted at the

following URL: http://psychophysiology.cpmc.columbia.edu/eegcsdepoch.

html
surface potentials or their reference-free CSD transformations,

to summarize and quantify EEG activity under the concept of a

‘spectral component.’ The suggested composite approach,

combining PCA and CSD methodology using amplitude

spectra, has a number of distinct advantages. First, the use of

reference-free CSD waveforms preserves a direct relationship

to the current generators that volume-conduct to produce the

scalp-recorded EEG. As such, the neuroanatomical interpret-

ations of regional findings stemming from these data are less

ambiguous than their counterparts using conventional,

reference-dependent EEG. Second, the subsequent use of an

amplitude spectrum to transform and summarize CSD

waveform topographies retains these linear properties, an

advantage that is lost for conventional power or log power

spectra. Third, instead of quantifying spectral components

with rigid, a priori rectangular frequency bands, fPCA

components adhere closely to the observed data, that is, their

variance structure. Finally, fPCA efficiently identifies and

removes artifact sources as linearly independent factors. Eye

movement artifacts are confined to a low frequency

component with a topography restricted to sites nearest the

eyes, while muscle artifacts are identifiable by a high

frequency spectrum and characteristic topography (Gonch-

arova et al., 2003; Lee and Buchsbaum, 1987).

While none of the elements of the proposed method are

new, even for EEG analyses, the suggested combination is

unique and establishes an entirely new approach for

identifying, measuring, and summarizing spectral EEG

activity. Previously, for example, other investigators have

recommended regression analysis (e.g. Davidson, 1988) or

PCA (e.g. Wallstrom et al., 2004) for removing artifact from

the resting EEG. Lagerlund et al. (2004) employed fPCA as

an interactive filter to extract, and subsequently reconstruct,

individual CSD time epochs from their complex Fourier

spectra, using amplitude spectra for display. PCA has also

been used to simplify the analysis of EEG power or log

power for data restricted to fixed, predetermined frequency

bands (Arruda et al., 1996). In contrast, the uniqueness of

the present method originates from the exploitation of the

complete spectral signature of EEG components and

artifacts using one linear method without a priori limitation,

yielding a completely ‘data-driven’ and at the same time

physiologically-meaningful approach.

4.1. Advantages of amplitude spectra

Despite a priori reasons for focusing on fPCA solutions

based on CSD amplitude spectra, the common use of log

power spectra in quantitative EEG makes it of general

interest to compare these solutions with those based on log

power spectra, as well as the power spectra from which they

are derived. The results showed that power spectrum fPCA

solutions attenuated high frequencies and produced numer-

ous alpha factors with overlapping or identical peak

frequencies, thereby severely limiting their interpretation.

On the other hand, log power spectra emphasized high

http://psychophysiology.cpmc.columbia.edu/eegcsdepoch.html
http://psychophysiology.cpmc.columbia.edu/eegcsdepoch.html


Fig. 5. (A) Representative eyes-closed CSD epoch for one participant with a high factor 8.6-Hz amplitude at Fz. Prominent CSD alpha rhythmicity at Fz and P8

tended to be precisely out of phase, with sources (sinks) at Fz being concurrent with sinks (sources) at P8. Corresponding CSD maps illustrate the linkage

between waveforms at these sites (upper row refers to Fz sinks, bottom row refers to Fz sources). Fz sinks (cold colors at mid-frontal regions, blue lines refer to

associated time point) are concurrent with inferior/posterior sources (warm colors), while Fz sources (warm colors at mid-frontal regions, red lines) frequently

correspond to inferior/posterior sinks. Note that, unlike the waveform shown, all topographies were computed after smoothing the CSD by applying a 24-db,

15-Hz low pass filter. (B) The amplitude spectrum topography of the same CSD epoch shows spectral (maximum amplitude at 8.6 Hz) and regional properties

(maxima at midline frontal and inferior/posterior sites) consistent with a prominent 8.6-Hz CSD factor (cf. Fig. 4C).
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frequencies (including line, CRT, and muscle artifacts) and

produced few high-variance factors with broad spectral

peaks. While the latter finding could imply that log power

spectra are particularly helpful to quantify beta rather than

alpha activity, researchers should be aware that high-

frequency EEG topographies may easily be distorted by or

result from a concurrent muscle artifact. As expected,

amplitude spectra yielded solutions with the desirable

outcome of an intermediate density (number and overlap

of loadings) of alpha factors. In general, CSD fPCA

solutions were similar to those derived from nose-

referenced EEG spectra, but had the advantage of sharper

factor score topographies, and produced factor loadings

with less overlap, both in amplitude and spectral bandwidth,

thereby increasing the uniqueness of each factor.

Across scaling methods, the topographies of EEG and

CSD alpha factors varied systematically according to peak

frequency, with low frequencies (theta/low alpha) including

a midline frontocental and an inferior/posterior topography,

while higher frequencies (mid and high alpha) showed the

classic medial/posterior topography. CSD amplitude scaling

produced the simplest fPCA solution, requiring only three

spectrally- and topographically-distinct factors (i.e. minimal

overlap) to account for most of the activity in the classic

alpha band. Each of these alpha factors was present in two

independent samples of healthy adults and depressed

patients, and all were physiologically plausible (posterior

topographies, greatest for eyes closed).

Furthermore, a comparison across scaling methods using

fPCA indicates that the choice of a log power spectrum may
misrepresent the underlying data, particularly when used in

concert with predetermined frequency bands. Much of the

variance about the mean of the EEG log power spectrum

was summarized by a single alpha factor (additional alpha

factors had lower variance) with a substantial roll-off into

adjoining frequency bands (Fig. 3C), meaning that activity

representing the traditional alpha band systematically

covaries with theta and beta activity with this scaling.

This finding indicates that an 8–13 Hz frequency band

would be an arbitrary choice. Conversely, rectangular

frequency estimates of alpha will also include contributions

from spectral components outside the alpha band, most

notably including EEG theta and muscle artifact, depending

on the amount of overlap. This problem is particularly

pervasive for regions and conditions in which alpha

amplitudes are low (e.g. at frontal sites or at rest with

eyes open).
4.2. Limitations of the proposed method

Despite the empirical and theoretical elegance of CSD

methodology, a surface Laplacian estimate is restricted to

the spatial domain in which the EEG is recorded: the scalp.

Moreover, it disproportionately represents superficial

generators (Nunez, 1990; Nunez et al., 1997; Srinivasan et

al., 1998). Consequently, to the extent that EEG rhythms are

widely synchronized across the scalp (Steriade, 2000), or

are transmitted locally through cortex by wave-propagation

(Robinson, 2003), local scalp-potential gradients may be

sufficiently shallow to be poorly resolved by a surface
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Laplacian. In these cases, low-resolution estimates may

actually give a better qualitative description of EEG

generators than those observed using high resolution

methods. When it is suspected that a CSD topography is

over-resolved, this descriptive information may be restored

by using a multiresolutional approach, either by varying the

spatial filter properties of the CSD algorithm itself (e.g.

using lower resolution subsets of electrodes; Tenke et al.,

1993), or by exploiting the spatial filter properties of the

different EEG measures (e.g. field potentials, CSD and

cortical image; Nunez et al., 1997).

An additional concern is that CSD estimates are model-

dependent, making it particularly important to assure that a

chosen computational algorithm behaves appropriately for

effects that have been determined to be important. However,

algorithm- or model-dependent errors can be discounted if it

can be shown that estimates based on different models

produce similar solutions (e.g. Tandonnet et al., 2005, and

Tenke et al., 1998, for similarity of local Hjorth and

spherical spline Laplacians). Likewise, CSD estimates near

the edges of the montage must always be interpreted with

caution, since they are invariably based on insufficient

sampling at these locations (i.e., there are no data for

locations outside the montage).

Even without any evidence that a surface Laplacian is an

effective method to summarize EEG spectra, the fact that it

provides a reference-independent simplification of EEG

topographies is by itself sufficient to endorse its use over

traditional qEEG measures. Although it might be argued

that more information is provided by other source imaging

methods (for a review, see Michel et al., 2004), such as

BESA (Scherg and von Cramon, 1985, 1986), which can

precisely localize equivalent dipoles within a simplified

geometric model, the solutions are non-unique and will fail

if discrete, equivalent dipoles are inadequate to describe a

particular generator. A useful alternative to fitting equival-

ent dipoles to the data is to localize the generators of Eq. (1)

as smoothed, three-dimensional equivalent ‘clouds’

(LORETA; Pascual-Marqui et al., 1994). The most obvious

shortcomings of this approach are that punctate generators

will be smeared (Grave de Peralta Menendez and Gonzalez

Andino, 2000), and the local sign (i.e. ‘dipole orientation’)

of the generators may lose a precise relationship to regional

cytoarchitecture (i.e. the degree of smoothing may be

prevent an accurate representation of the pattern of

intracortical sources and sinks, or their alignment with

cortical projection cells). However, a greater concern for the

present purposes is that the models themselves must be

conducive to developing a quantitative method. In contrast

to other methods, a surface Laplacian can be used as a

preprocessing step that does not preclude either the

production of spectral measures, or their subsequent

simplification using fPCA.

In this study of resting EEG, conventional power

spectrum averages were scaled to operationally define the

‘effective’ amplitude of a sinusoidal signal (Fourier
component) by its RMS amplitude. Although power

spectra are a methodological standard (e.g. Davidson et

al., 2000; Pivik et al., 1993), its square root, the CSD

amplitude spectrum recasts variance-related data in way

that is more directly (and intuitively) related to the

underlying volume-conductor model. Amplitude spectra

thereby provide a closer analog to conventional peak or

window measures of ERP amplitude, particularly when the

EEG shows a stable rhythm. However, it cannot be inferred

that amplitude scaling is optimal for active EEG

paradigms, in which alpha is not necessarily the dominant

physiological signal (e.g. Davidson et al., 1990; Koles et

al., 2001; Lind et al., 1999; Papousek and Schulter, 2004).

A recommendation for EEG measures in these tasks must

await empirical evaluation.

Although the approach outlined here is considerably

more powerful than similar methods in standard use, the

amplitude spectrum is limited by its lack of phase

information. For this reason, as outlined below, supplemen-

tal methods may be required to evaluate multiple generators.

An alternative approach using cross spectra retains phase

information (e.g. Lind et al., 1999; Pizzagalli et al., 2001).

However, it should be noted that cross-spectrum means do

not represent all activity, but rather all activity that is shared

(correlated) across electrodes (e.g. Bendat and Piersol,

1971). The difference is not trivial, since the two approaches

summarize a fundamentally distinct subset of activity from

that described by either CSD amplitude spectra or

conventional EEG power spectra.

The use of fPCA methodology completely avoids the

problems inherent in the use of rigidly-defined rectangular

frequency bands by matching non-rectangular templates (i.e.

components) to the variance structure of the data. Following

the approach developed for ERPs (Kayser and Tenke, 2003),

we used a covariance-based PCA with unrestricted factor

extraction and Varimax rotation of the unscaled (covariance)

loadings. Using this approach, ERP factors were more directly

interpretable (i.e. more useful) when extracted using a

covariance rather than correlation association matrix, and

the components were better defined and more stable using

unrestricted solutions rather than solutions employing factor

retention criteria (e.g. a Scree test). High-variance factors

tended to improve rapidly as successive factors were

extracted, reflecting, at least in part, the removal of noise

from overlapping waveforms of interest. However, low-

variance factors required cautious consideration, and were

regarded as interpretable when, and only when, the shape of

the loadings and the topography of the factor scores were both

consistent with an independently-verified physiological

component (Kayser and Tenke, 2003). These cautions apply

even more strongly to fPCA, since the properties of spectral

waveforms are not as well understood. However, it was

previously shown that the general principles of an unrestricted,

covariance-based Varimax-PCA detailed for ERP data

(Kayser and Tenke, 2003) also apply to nose-referenced

EEG spectra (Kayser et al., 2000).
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For the temporal PCA used with ERP data, the

prestimulus period provides appreciable information about

the quality of a baseline-corrected ERP recording, as well as

about the interpretability of a PCA factor solution (Kayser

and Tenke, 2003). The variance is small near the onset of the

stimulus, and large near the end of the recording epoch, and

at treatment-dependent ERP component peaks (Kayser and

Tenke, 2003; Lehmann and Skrandies, 1980; van Boxtel,

1998). For spectral data, the highest signal variance is

generally observed at the lowest frequencies (i.e. the

beginning of the spectral epoch), while an identifiable

‘zero’ at high frequencies can serve a comparable function

for fPCA solutions. Since large amplitude loadings at high

frequencies are likely to represent or include artifact, such

factors should be interpreted only after a critical evaluation

of factor score topographies. As with ERP data, negative-

valued regions of a fPCA topography must also be

interpreted with caution, as the sign of the factor scores

reflect variations around the grand mean that has been

removed by factoring the covariance matrix. Since

amplitude spectra are exclusively positive-valued, the

numerical zero used as a reference point has a different

meaning than it does for a temporal PCA derived from

baseline-corrected ERP data.7 As a final limitation, the

impact of additional parametric variations should also be

explored (e.g. epoch duration, which is inversely related to

the frequency resolution of the FFT), as the present study

conveniently applied PCA methodology optimized for ERP

data (Kayser and Tenke, 2003).
4.3. Identification of spectral components of the EEG

The topography and symmetry of EEG alpha figures

prominently in recent models of brain function and

psychopathology, with a particular emphasis on frontal

alpha (Bruder et al., 1997; Davidson, 1998; Hagemann,

2004; Heller et al., 1995; Shankman et al., 2005).

However, the stability and asymmetry of the alpha

topography may vary, depending on the electrode site

and the recording reference (cf. Fig. 1; Allen et al., 2004a,

b; Debener et al., 2000a; Hagemann et al., 2001; Reid

et al., 1998). Inasmuch as the CSD fPCA detailed here

offers a reliable, reference-independent approach that

summarizes the distribution of the underlying current

generators, it could provide a much-needed standard for

this difficult field.

Alpha rhythmicity in the resting EEG has a well-

documented posterior topography. The fPCA solutions all

support this classic property for high-frequency alpha

(peaksO10 Hz). However, additional low-frequency alpha
7 All values of the grand mean amplitude spectra waveform are positive-

valued (i.e. equal to or greater than zero). In contrast, the values of a grand

mean ERP waveform can have either sign. In both cases, however, the sign

of the factor scores must be interpreted with respect to the corresponding

loading interval of the grand mean waveform for a given factor.
factors were also extracted in most solutions, characterized by

inferior/posterior and midline anterior topographies. Although

fPCA solutions for EEG and CSD differed in the number and

prominence of alpha factors, the solution for reference-free

CSD amplitude spectra was the most simple, separating a low

alpha factor from a high alpha factor, as well as an additional

intermediate alpha factor. The latter alpha factor had a sharper

and more symmetric loading waveform than the other alpha

factors, with a midline posterior topography that was similar

to, but shallower than that of the high-alpha factor. In contrast,

low alpha was maximal at inferior locations. By virtue of the

CSD transformation, it can be concluded that the generators of

all factors were localizable to posterior brain regions, which is

consistent with previous surface Laplacian descriptions

(Nunez et al., 1997; Srinivasan et al., 1998). In further

accordance with the concept of a spectral component, all three

alpha factors showed a condition-related dependency (i.e.

greater amplitude with eyes closed), and were reproducible

across groups and studies. Rhythmicity in motor regions

attributable to mu rhythm was not observed among the high-

variance factors (i.e. the first 10 extracted) in our sample of

resting EEG, suggesting that this phenomenon does not

account for or contribute to the alpha topographies observed

on a group level. Similarly, and notably, no factor suggested

generators on the dorsal surface of the frontal lobes. The lack

of evidence for additional frontal generators in such a large

sample is problematical for existing models of resting EEG

asymmetries.

The rising slope of the low alpha loading spectrum

includes a prominent theta contribution, with a topography

that includes a secondary focus on the frontal midline.

Interestingly, task-dependent theta has a similar midline-

frontal topography (Gevins and Smith, 2000; Gevins

et al., 1997; McEvoy et al., 2001). By submitting cross-

spectra (i.e. unscaled coherent activity) to LORETA,

Pizzagalli et al. (2001) localized the effective generators of

task-related theta to anterior cingulate cortex. Luu et al. (2004)

found evidence for a midfrontal theta contribution to the error-

related negativity. Using Parallel Factor Analysis and PCA,

Miwakeichi et al. (2004) reported a comparable localization of

scalp- and intracranially-recorded theta during arithmetic

tasks. Moreover, theta during working memory tasks is

synchronized between prefrontal and posterior association

regions (Sarnthein et al., 1998), and can be recorded from

extrastriate visual cortex (monkeys; Lee et al., 2005).

Although caution must be used when comparing the spectral

properties of the resting and task-related EEG (as well as

ERP), it is tempting to suggest a common anatomical and

physiological origin (i.e. the ‘low alpha’ factor reported here

represents activity in the theta band), particularly considering

the report of an anterior-midline, lorazepam-resistant, resting

EEG alpha (LORETA; Connemann et al., 2005).

Although the scalp-recorded EEG represents volume-

conducted activity, local intracranial cancellation (i.e.

partial field closure) can have a measurable impact on a

topography. Such properties may take the form of abrupt
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transitions or discontinuities in an otherwise regular

topography. One model-dependent implication of these

irregularities is the occasional localization of a physiologi-

cally implausible generator, such as a radially-oriented

dipole aligned within the frontal midline. A physiologically

plausible generator must represent both the location and the

organization of the tissue, so that the dipole-equivalent to a

laminar pattern of sources and sinks must be oriented

normal to the cortical surface (‘cortical dipole’ of Lorente

de No, 1947; also see Mitzdorf, 1985; Tenke et al., 1993).

However, bilateral activation of homologous regions in both

hemispheres must be resolved as a pair of tangentially-

oriented dipoles in direct opposition to each, reflecting a

local field that is largely, but incompletely, cancelled, to

leave a small, sharply-localized residual at the midline (cf.

Fig. 3 of Tenke et al., 1993).

The secondary midline frontal focus illustrates both the

strengths and the limitations of the composite fPCA

approach based on CSD amplitude spectra. The sharply-

localized topography along the frontal midline is

consistent with an effective midline generator, resulting

from the synchronized, bilateral activation of symmetric

cortical regions on both surfaces within the longitudinal

fissure. However, a CSD topography produced by bilateral

generators confined to the walls of the fissure would either

be displaced to the lateral surface of the frontal lobes

(analogous to the displacement of auditory N1 CSD

topography from the Sylvian fissue; cf. Fig. 2 of Tenke et

al., 1998), or else would produce field closure artifacts at

nearby electrodes (e.g. sinks at Fz surrounded by smaller

sources at F3 and F4; Tenke et al., 1993, and unpublished

observations of surface Laplacian topographies for

simulated closed fields). These distinctive properties

should be clearest in individual cases and records, where

there is no possibility of smearing across subjects or

states.

The representative example given in Fig. 5 argues

strongly against a bilateral, sulcal generator based on two

observations: (1) CSD sources and sinks were not strictly

confined to midline electrodes; (2) midline sources and

sinks were not coupled with misallocated complements (i.e.

sinks and sources, respectively) at midfrontal sites (i.e.

F3/4). Moreover, a deeper pair of sulcal generators (e.g.

bilateral cingulate cortex), if their activity could indeed be

recorded at scalp, is more likely to produce a bilateral CSD

topography that is displaced from the midline. This is due

both to the extensive cancellation of the opposing effective

dipoles at a (tangential) distance and to the reinforcement of

the field potential orthogonal to the lamination of the cortex

(i.e. in the direction of the underlying white matter). Given

these considerations, we conclude that the high-amplitude,
8 A precise model of the properties of putative midline generators could

only be produced from the laminar pattern of CSD sources and sinks

obtained from intracranial recordings.
midline-frontal alpha observed here originated from

generators distributed over cortex within and adjacent to

the longitudinal fissure (i.e. near the convexity), rather than

from deep within the fissure (e.g. cingulate cortex).8

It may be argued that the fPCA of the CSD amplitude

spectrum provided an oversimplified solution, statistically

combining the contributions of inferior/posterior low alpha

with an independent midline theta that has a similar

spectrum. Although we cannot universally refute the

possibility, the present findings do indicate that the

activity of the midline-frontal generator is associated

with the activity at posterior/inferior sites. The prominence

of the frontal focus varies across subjects in direct relation

to the amplitude of the larger, posterior alpha generator

(Fig. 4C). Consistently, the sample epoch illustrated in

Fig. 5 indicates a precise inversion of frontal midline and

posterior/inferior CSD waveforms. This pattern is not a

result of the spherical Laplacian model, because the same

relationship was verified using a planar local Hjorth

Laplacian. The close association between regions was

further supported by examining pairwise coherences with

Fz between electrodes, which were similar to the power

spectrum shown in Fig. 5.

Finally, one could suggest that a single pair of posterior

generators can account for the entire topography.

Specifically, frontal alpha activity may merely reflect the

intersection of the underside of posterior dipoles.

However, this degree of symmetry and focus is unlikely

for a CSD feature recorded at such a distance from its

underlying generator. Moreover, a single pair of posterior

generators cannot account for all cases, most notably the

pattern illustrated in Fig. 5, because midline and posterior

CSD amplitudes are comparable, and posterior activity is

asymmetric. Therefore, we conclude that the midline

frontal CSD focus reflects a distinct neuronal generator

that may, at times, synchronize with activity at posterior

sites.
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Näätänen R, Picton TW. The N1 wave of the human electric and magnetic

response to sound: a review and an analysis of the component structure.

Psychophysiology 1987;24(4):375–425.

Nicholson C. Theoretical analysis of field potentials in anisotropic

ensembles of neuronal elements. IEEE Trans Biomed Eng 1973;

20(4):278–88.

Nicholson C, Freeman JA. Theory of current source-density analysis and

determination of conductivity tensor for anuran cerebellum.

J Neurophysiol 1975;38(2):356–68.

Niedermeyer E. The normal EEG in the waking adult. In: Niedermeyer E,

Lopes da Silva F, editors. Electroencephalography: basic principles,

clinical applications and related fields. 2nd ed. Baltimore, MD: Urban &

Schwarzenberg; 1987. p. 97–117.

Niedermeyer E. Alpha rhythms as physiological and abnormal phenomena.

Int J Psychophysiol 1997;26(1–3):31–49.

Nunez PL. Localization of brain activity with electroencephalography. Adv

Neurol 1990;54:39–65.

Nunez PL, Silberstein RB, Cadusch PJ, Wijesinghe RS, Westdorp AF,

Srinivasan R. A theroretical and experimental study of high resolution

EEG based on surface Laplacians and cortical imaging. Electroence-

phalogr Clin Neurophysiol 1994;90:40–57.



C.E. Tenke, J. Kayser / Clinical Neurophysiology 116 (2005) 2826–28462846
Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM,

Silberstein RB, Cadusch PJ. EEG coherency. I: statistics, reference

electrode, volume conduction, Laplacians, cortical imaging, and

interpretation at multiple scales. Electroencephalogr Clin Neurophysiol

1997;103(5):499–515.

Oldfield RC. The assessment and analysis of handedness: the Edinburgh

inventory. Neuropsychologia 1971;9(1):97–113.

Oostendorp TF, van Oosterom A. The surface Laplacian of the potential:

theory and application. IEEE Trans Biomed Eng 1996;43(4):394–405.

Papousek I, Schulter G. Manipulation of frontal brain asymmetry by

cognitive tasks. Brain Cogn 2004;54(1):43–51.

Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromag-

netic tomography: a new method for localizing electrical activity in the

brain. Int J Psychophysiol 1994;18(1):49–65.

Pernier J, Perrin F, Bertrand O. Scalp current density fields: concept and

properties. Electroencephalogr Clin Neurophysiol 1988;69(4):385–9.

Perrin F, Pernier J, Bertrand O, Echallier JF. Spherical splines for scalp

potential and current density mapping. Electroencephalogr Clin

Neurophysiol 1989;72(2):184–7 [Corrigenda EEG 02274, Clin Neuro-

physiol, 1990, 76, 565].

Perrin F, Pernier J, Bertrand O, Echallier JF. Corrigenda EEG 02274.

Electroencephalogr Clin Neurophysiol 1990;76:565.

Pfurtscheller G. Induced oscillations in the alpha band: functional meaning.

Epilepsia 2003;4412(Suppl. 12):2–8.

Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson Jr R,

Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ. Guidelines for

using human event-related potentials to study cognition: recording

standards and publication criteria. Psychophysiology 2000;37(2):

127–52.

Pineda JA, Silverman DS, Vankov A, Hestenes J. Learning to control brain

rhythms: making a brain–computer interface possible. IEEE Trans

Neural Syst Rehabil Eng 2003;11(2):181–4.

Pivik RT, Broughton RJ, Coppola R, Davidson RJ, Fox N, Nuwer MR.

Guidelines for the recording and quantitative analysis of electro-

encephalographic activity in research contexts. Psychophysiology

1993;30(6):547–58.

Pizzagalli D, Pascual Marqui RD, Nitschke JB, Oakes TR, Larson CL,

Abercrombie HC, Schaefer SM, Koger JV, Benca RM, Davidson RJ.

Anterior cingulate activity as a predictor of degree of treatment

response in major depression: evidence from brain electrical

tomography analysis. Am J Psychiatry 2001;158(3):405–15.

Pollock VE, Schneider LS, Lyness SA. Reliability of topographic

quantitative EEG amplitude in healthy late-middle-aged and elderly

subjects. Electroencephalogr Clin Neurophysiol 1991;79(1):20–6.

Reid SA, Duke LM, Allen JJ. Resting frontal electroencephalographic

asymmetry in depression: inconsistencies suggest the need to identify

mediating factors. Psychophysiology 1998;35(4):389–404.

Robinson PA. Neurophysical theory of coherence and correlations of

electroencephalographic and electrocorticographic signals. J Theor Biol

2003;222(2):163–75.

Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A.

Synchronization between prefrontal and posterior association cortex

during human working memory. Proc Natl Acad Sci USA 1998;95:

7092–6.

Scherg M, von Cramon D. Two bilateral sources of the late AEP as

identified by a spatio-temporal dipole model. Electroencephalogr Clin

Neurophysiol 1985;62(1):32–44.

Scherg M, von Cramon D. Evoked dipole source potentials of the human

auditory cortex. Electroencephalogr Clin Neurophysiol 1986;65(5):

344–60.

Schroeder CE, Tenke CE, Givre SJ. Subcortical contributions to the

surface-recorded flash-VEP in the awake macaque. Electroencephalogr

Clin Neurophysiol 1992;84:219–31.
Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution for reliable

and valid reduction of ocular artifacts, applied to the P300 ERP.

Psychophysiology 1986;23(6):695–703.

Shankman SA, Tenke CE, Bruder GE, Durbin CE, Hayden EP, Klein DN.

Low positive emotionality and EEG asymmetry. Dev Psychopathol

2005;17:85–98.

Simson R, Vaughan Jr HG, Ritter W. The scalp topography of potentials

associated with missing visual or auditory stimuli. Electroencephalogr

Clin Neurophysiol 1976;40(1):33–42.

Spencer KM, Dien J, Donchin E. A componential analysis of the ERP

elicited by novel events using a dense electrode array. Psychophysiol-

ogy 1999;36(3):409–14.

Spencer KM, Dien J, Donchin E. Spatiotemporal analysis of the late ERP

responses to deviant stimuli. Psychophysiology 2001;38(2):343–58.

Srinivasan R, Nunez PL, Silberstein RB. Spatial filtering and neocortical

dynamics: estimates of EEG coherence. IEEE Trans Biomed Eng 1998;

45(7):814–26.

Steriade M. Corticothalamic resonance, states of vigilance and mentation.

Neuroscience 2000;101(2):243–76.

Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in

the sleeping and aroused brain. Science 1993;262(5134):679–85.

Tandonnet C, Burle B, Hasbroucq T, Vidal F. Spatial enhancement of EEG

traces by surface Laplacian estimation: comparison between local and

global methods. Clin Neurophysiol 2005;116(1):18–24.

Tenke CE. Statistical characterization of the EEG: the use of the power

spectrum as a measure of ergodicity. Electroencephalogr Clin

Neurophysiol 1986;63(5):488–93.

Tenke CE, Kayser J. A convenient method for detecting electrolyte bridges

in multichannel electroencephalogram and event-related potential

recordings. Clin Neurophysiol 2001;112(3):545–50.

Tenke CE, Kayser J, Fong R, Leite P, Towey JP, Bruder GE. Response- and

stimulus-related ERP asymmetries in a tonal oddball task: a Laplacian

analysis. Brain Topogr 1998;10(3):201–10.

Tenke CE, Schroeder CE, Arezzo JC, Vaughan Jr HG. Interpretation of

high-resolution current source density profiles: a simulation of

sublaminar contributions to the visual evoked potential. Exp Brain

Res 1993;94(2):183–92.

Timofeev I, Grenier F, Bazhenov M, Houweling AR, Sejnowski TJ,

Steriade M. Short- and medium-term plasticity associated with

augmenting responses in cortical slabs and spindles in intact cortex of

cats in vivo. J Physiol 2002;542(2):583–98.

van Boxtel GJM. Computational and statistical methods for analyzing

event-related potential data. Behav Res Methods Instrum Comput 1998;

30(1):87–102.

Wallstrom GL, Kass RE, Miller A, Cohn JF, Fox NA. Automatic correction

of ocular artifacts in the EEG: a comparison of regression-based and

component-based methods. Int J Psychophysiol 2004;53(2):105–19.

Woestenburg JC, Verbaten MN, Slangen JL. Stimulus information and

habituation of the visual event related potential and the skin

conductance reaction under task-relevance conditions. Biol Psychol

1983;16:225–40.

Wolpaw JR, McFarland DJ. Multichannel EEG-based brain-computer

communication. Electroencephalogr Clin Neurophysiol 1994;90(6):

444–9.

Wood CC, McCarthy G. Principal component analysis of event-related

potentials: simulation studies demonstrate misallocation of variance

across components.. Electroencephalogr Clin Neurophysiol 1984;59(3):

249–60.

Yao D. The theoretical relation of scalp Laplacian and scalp current

density of a spherical shell head model. Phys Med Biol 2002;

47(12):2179–85.


	Reference-free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA)
	Introduction
	Quantification of EEG rhythms
	Volume-conduction and CSD
	EEG power spectra
	Frequency principal components analysis (fPCA)

	Methods
	Participants
	EEG recording and preprocessing methods
	CSD computation
	Spectral analysis and fPCA methods

	Results
	Comparison of averaged EEG and CSD power spectra
	Comparison of EEG and CSD fPCA solutions
	fPCA alpha factors from CSD amplitude spectra: reproducibility across groups

	Discussion
	Advantages of amplitude spectra
	Limitations of the proposed method
	Identification of spectral components of the EEG

	Acknowledgements
	References


