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Abstract

Objective: To determine how specific methodological choices affect “data-driven” simplifications of event-related potentials (ERPs)
using principal components analysis (PCA). The usefulness of the extracted component measures can be evaluated by knowledge about
the variance distribution of ERPs, which are characterized by the removal of baseline activity. The variance should be small before and
at stimulus onset (across and within cases), but large near the end of the recording epoch and at ERP component peaks. These
characteristics are preserved with a covariance matrix, but lost with a correlation matrix, which assigns equal weights to each sample
point, yielding the possibility that small but systematic variations may form a factor.

Methods: Varimax-rotated PCAs were performed on simulated and real ERPs, systematically varying extraction criteria (number of
factors) and method (correlation/covariance matrix, using unstandardized/standardized loadings before rotation).

Results: Conservative extraction criteria changed the morphology of some components considerably, which had severe implications
for inferential statistics. Solutions converged and stabilized with more liberal criteria. Interpretability (more distinctive component
waveforms with narrow and unambiguous loading peaks) and statistical conclusions (greater effect stability across extraction criteria)
were best for unstandardized covariance-based solutions. In contrast, all standardized covariance- and correlation-based solutions included
“high-variance” factors during the baseline, confirming findings for simulated data.

Conclusions: Unrestricted, unstandardized covariance-based PCA solutions optimize ERP component identification and measurement.

Keywords: Event-related Potential (ERP); Principal Components Analysis (PCA); Covariance matrix; Correlation matrix; Varimax
rotation; Extraction criteria

1. Introduction 

1.1. Conceptualizations of ERP components

Event-related potentials (ERPs) reflect activity patterns of
neuronal generators, such as the modality-specific, sequen-
tial activation in afferent and central pathways evoked by
transient sensory stimuli, which sum and volume conduct to
scalp electrodes (e.g., Rose and Woosley, 1949). The
component structure of ERPs incorporates the transfer
properties of these neuronal processes in their time course
and topography (e.g., Kraut et al., 1985; Schroeder et al.,
1991; Tenke et al., 1993), although much of this infor-
mation is masked in the awake, behaving organism. Thus,
ERP components are classically conceived as an electro-
physiologic correlate of the underlying neuronal generators
associated with information processes.

The linkage between ERP waveforms and the underlying
biophysics is less obvious in complex cognitive paradigms,
which typically focus on differences between overlapping
ERP components (e.g., Friedman, 1990; Kutas and Hillyard,
1980; Näätänen and Picton, 1987; Simson et al., 1976;
Squires et al., 1975; Sutton et al., 1965). Although ERP
studies appear to share a common nomenclature, based on
polarity, sequence or timing, and attributed function (e.g.,
N1/N100, P3/P300), a prominent peak or trough in a
waveform may not be informative or important in the
context of a complete topography or a particular paradigm.
For instance, a peak may invert in polarity across the scalp
topography, or appear entirely different when converted to
a different reference (see discussion in Kayser et al., 2003,
for an example and implications; cf. also Dien, 1998b).

A frequently neglected issue in ERP studies is the
difference between a conceptual (theoretical) and a
technical (observational) definition of an ERP component
(see, e.g., Donchin et al., 1977, 1978, 1997; Fabiani et al.,
2000; Näätänen and Picton, 1987; van Boxtel, 1998).
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Cognitive ERP research has extended the traditional
conceptualization of an ERP component, being a construct
of the underlying neuronal generators, by operationally
defining endogenous ERP components as condition-related
differences of distinct ERP deflections (e.g., MMN, N2b,
P3b, Novelty P3), which may markedly differ between
various populations (e.g., age, gender, handedness, clinical
diagnosis). Paradoxically, all practical estimates of these
generic ERP components, ranging from simple baseline-to-
peak measures to more sophisticated waveform decompo-
sition methods, are formally unrelated to the neuronal origin
of the ERP. Instead, they are based on an evaluation of the
temporal and/or spatial structure of the ERP signal and its
statistical properties, which is not a trivial problem consi-
dering the richness of the data source with its high temporal
resolution in the millisecond range (e.g., Chapman and
McCrary, 1995; Picton et al., 2000). The analysis and
interpretation of ERPs requires an effective method for
measuring components of interest; however, the signi-
ficance and heuristic value of any component measure must
be judged by insights gained about anatomical, physio-
logical, and/or cognitive information processes.

Recent technological advancements have made possible
dense electrode arrays with a spatial resolution of 128 or
more channels, calling for an overhaul of the existing 10-20
system for electrode placements (Oostenveld and Praamstra,
2001; Pivik et al., 1993), and have therefore further in-
creased the volume of data recorded during a single experi-
ment. Given the goal of differentiating the impact of
experimental manipulations, the most direct, if simplistic,
approaches to quantify this information have continued to
measure the “obvious” characteristics of ERPs, namely the
amplitude and latency of waveform peaks and troughs, even
in the absence of a theoretical rationale that these
conspicuous deflections are always meaningful (e.g., see
Chapman and McCrary, 1995; Donchin and Heffley, 1978;
Picton et al., 2000). However, as convincingly exemplified
by Donchin and Heffley (1978), the simplicity of traditional
ERP peak and area measures is deceiving, as these measures
are subject to experimenter bias in specifying peaks in noisy
waveforms (a problem not removed by using a computer
algorithm), or in determining area integration limits for
deflections that invert and shift across scalp recording
locations.

1.2. Principal Components Analysis (PCA) of ERP data

To overcome the limitations of traditional peak and area
measures, principal components analysis (PCA) has been
advanced as a heuristic tool to determine “data-driven” ERP
component measures (e.g., Donchin 1966; Donchin and

Heffley, 1978; Glaser and Ruchkin, 1976; Möcks, 1988a,
1988b), and since has widely been used as an effective
linear reduction method for multivariate ERP data (e.g.,
Chapman and McCrary, 1995; Dien, 1998a; Duffy et al.,
1992; Picton et al., 2000; van Boxtel, 1998). In this ap-
proach, ERP waveforms are conceptualized as an ordered
sequence of recorded scalp potentials, typically using either
time (temporal) or topography (spatial) as the ordering
domain.1 The basic assumption of a temporal PCA is that a
collection of ERP waveforms (i.e., the cases, their number
being determined by multiplying participants, recording
locations, and experimental conditions), each consisting of
a finite number of surface potentials recorded at discrete
time points (i.e., the variables, their number being
determined by the sampling rate and the length of the
recording epoch), can be decomposed into a linear
combination of principal component coefficients (i.e., the
factor loadings) and associated weights (i.e., the factor
scores). The component coefficients represent, with respect
to the cases, invariant loading patterns across the ordered
variables (i.e., time points), often referred to as ‘component
waveforms’ (Chapman and McCrary, 1995), which are
orthogonal to each other (for a brief description of principle
axis rotation, e.g. Hunt, 1985; Rösler and Manzey, 1981; for
computational details, see Glaser and Ruchkin, 1976;
Harman, 1967; Appendix). The component or factor scores
represent the relative contribution or weight of each loading
pattern for each case (i.e., each ERP), and may therefore
subsequently be used to compare the different ERPs for a
given loading pattern, for instance, by employing an
analysis of variance (ANOVA) reflecting the study design.

ERP waveforms may be linearly decomposed in an
infinite number of ways (e.g., Glaser and Ruchkin, 1976).
An initial PCA factor extraction likewise provides only one
nonunique solution set, unless a single component fully
describes the data (e.g., van Boxtel, 1998). The maximum
number of PCA components that can be extracted from a
cases-by-variables data matrix is determined by the smaller
of the number of rows (cases) or columns (variables),
although fewer components may be sufficient to fully
account for the variance of a linearly dependent matrix. For

1 It should be noted that the PCA algorithm is blind to any
underlying data organization (i.e., temporal, spatial, spectral, etc.),
and identifies systematics solely by intercorrelations of data
variables. Randomly shuffling the variable sequence will not
change the PCA solution, but will make it very difficult for a
researcher to interpret the component structure, unless the original
order is restored. It is the a priori ordered, sequential nature of
ERPs (temporal and spatial) that distinguishes these data sets from
other unstructured data sets to which PCA is commonly applied.
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a temporal PCA, the number of variables depends on the
duration of the recording epoch considered for analysis and
the sampling rate, whereas the number of observations
(cases) equals the number of ERP waveforms submitted
(i.e., subjects, conditions, and scalp sites). To obtain a more
stable PCA solution, it is generally suggested that the
number of observations should exceed the number of
variables (e.g., Chapman and McCrary, 1995), usually
several times more, which may require adjusting epoch
length, sampling rate, or both. However, this general rule
has been challenged by the findings of Guadagnoli and
Velicer (1988), who demonstrated that absolute sample size,
magnitude of component loadings, and to a lesser degree the
number of variables defining a component were by far more
important to attain a stable solution.

Apart from selecting input variables (e..g., epoch length,
sample rate, trials used for averaging ERPs), any application
of PCA to ERP data requires a choice between several
specific methodological alternatives, including the type of
association matrix, whether (and how) factors are rotated,
and the criterion for the number of components to be
extracted (e.g., Chapman and McCrary, 1995; Donchin and
Heffley, 1978; Picton et al., 2000). Frequently, the raw data
matrix is initially transformed into the correlation matrix
(i.e., the standardized variance-covariance matrix), which
has the advantage that all variables have the same variance
and that the extracted factors are therefore invariant under
scaling of the original variables (cf. Chapman and McCrary,
1995; Donchin and Heffley, 1978). However, it has been
argued that when all variables are measured in the same
units, which is usually the case for surface potentials
calibrated in microvolts, using either a cross-products or a
covariance matrix is preferable over using a correlation
matrix (e.g., Donchin and Heffley, 1978). Moreover, there
is no a priori reason to assume that the standard deviations
of the input variables are the same (cf. van Boxtel, 1998),
and, as argued below, exactly the opposite may be expected
for baseline-corrected ERP data. The main advantages of a
cross-products matrix are that PCA components will (1)
likely be related to large ERP deflections, and (2) factor
loadings and scores can be directly interpreted with respect
to the original data, as the sign of the factor scores reflects
the polarity of the underlying ERP component (e.g., van
Boxtel, 1998). These two advantages are also valid for a
covariance-based PCA, although for slightly different
reasons, as factors reflect the ERP variance around the
grand mean waveform, which is removed by this procedure.
The extracted factors should still closely relate to prominent
ERP deflections, because ERP variance is likely centered
around or in close temporal and/or spatial proximity of these

peaks, and the polarity of the associated ERP variance
relative to the grand mean can be inferred from the sign of
the component scores. As stressed by van Boxtel (1998), a
covariance-based PCA extracts components only “if there
is variation across electrodes, conditions, and subjects, and
that is exactly what researchers are looking for” (p. 92).
Still, it is widely believed that there is little, if any,
difference between PCA solutions based on the covariance
or correlation matrix when applied to typical ERP data (e.g.,
van Boxtel, 1998), and any advantages of the covariance
matrix, such as the close relation to the original metric, can
be easily resolved for the correlation matrix by multiplying
each loading value with the standard deviation of its input
variable (e.g., Chapman and McCrary, 1995). For these
reasons, Chapman and McCrary (1995) “can find no reason
for any vehement preferences” (p. 294), and van Boxtel
(1998) suggests that practical considerations, such as the
availability of an extraction procedure in a statistical
package, may be used as a guide to choose between these
alternatives. Unfortunately, there is considerable confusion
about how extraction procedures are implemented and used
in different statistical software packages, particularly in
combination with other methodological choices. For
instance, when a covariance matrix is factored, the loadings
may by default be standardized after extraction, that is, each
value of the component waveform is divided by the standard
deviation of the raw variables (across cases).

A rotation is commonly applied after factor extraction
with the goal of obtaining simpler interpretations of the
extracted components (e.g., Chapman and McCrary, 1995;
van Boxtel, 1998; Picton et al., 2000; but see Rösler and
Manzey, 1981, for caveats and arguments against factor
rotation). If a component waveform (i.e., the factor loadings
vector) consists of multiple or significant secondary loading
peaks, it can be very difficult or impossible to interpret such
a component. Frequently, a Varimax criterion (Kaiser,
1958) is applied to the initial PCA solution to achieve
simple structure (Thurstone, 1947), which maximizes the
loadings variance for the components retained for the
rotation procedure (e.g., Bortz, 1993; Chapman and
McCrary, 1995). Apart from minimizing component
overlap, the Varimax rotation also maintains orthogonality
of component scores (i.e., independence between
components), which is a significant advantage with respect
to inferential statistics usually performed on the factor
scores. As the probability of Type I errors increases with the
number of dependent variables (i.e., extracted factors)
considered for statistical analysis, the orthogonality of the
Varimax solution counteracts this undesired effect.
Covariance-based, Varimax-rotated component waveforms
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are typically characterized by unique triangle-shaped,
positive factor loadings that are 1) clustered in a narrow
time range and 2) lack inverse (negative) or significant
secondary loadings at different latencies. In other words,
because maximum weight is assigned to the time point that
coincides with the factor loadings’ peak, while neighboring
time points have smaller weights, and all other time points
of the recording epoch have zero weights, Varimax-rotated
PCA components can be conceived as a measure of
weighted time window amplitude (Kayser et al., 2000a,
2001). However, as pointed out by Chapman and McCrary
(1995), this is not a characteristic of the Varimax procedure,
which would identify unique variance with multiple
component peaks (e.g., if the epoch includes two successive
stimulus presentations, an common N1 factor with two
peaks is likely extracted), but rather an inherent feature of
the variance distribution in ERPs.

Other rotation procedures, particularly oblique rotations,
are less commonly used, although they may achieve a
greater degree of simple structure (Chapman and McCrary,
1995; van Boxtel, 1998). Dien (1998a), arguing that the
orthogonality criterion of the Varimax procedure (factors
must be uncorrelated) may result in distortions of the
component waveforms and may also be incompatible with
the underlying brain processes (i.e., different ERP
components and the activity of their underlying generators
may be correlated), has proposed the use of Promax
(Hendrickson and White, 1964) as an alternative rotation
procedure. Promax loosens the strict orthogonality criterion
of Varimax and allows multiple factors to share variance.
However, the advantage of Promax and any oblique rotation
method is at the same time a disadvantage, as the analyzed
components are no longer independent.

Fava and Velicer (1992, 1996) have warned that a bias
towards under- or overextraction of the true underlying
number of components may produce degraded and unstable
factors and thereby yield inaccurate solutions;
overextraction, however, was generally found to be a less
serious problem (Wood et al., 1996). A number of general
guidelines have been proposed for the number of
components to extract and interpret (e.g., Everett, 1983),
among them the scree test (Cattell, 1966), the criterion
proposed by Kaiser (1960) to use only components that
explain at least the variance equal to the average variance of
the original variables (i.e., components with Eigenvalues
larger than one when a correlation matrix is factored; e.g.,
Chapman and McCrary, 1995; van Boxtel, 1998), or parallel
analysis (Horn, 1965) to estimate the degree of random
noise inherent in the data (Bortz, 1993; Zwick and Velicer,
1986; see Dien, 1998a, and Beauducel et al., 2000, for

examples of parallel analysis in the context of ERP data).
Instead of using rather arbitrary criteria to extract, retain and
interpret PCA components derived from ERP data, we and
others (e.g., Donchin et al., 1997; Kayser et al., 1997, 1998,
1999, 2000a, 2001; Spencer et al., 1999, 2001) reasoned
that ERP expertise and a priori knowledge about the
paradigm should be used as a guide to focus on components
of interests. These research groups adopted a strategy that
extracts as many factors as needed to account for most or
even all of the data variance, but interpretation and
statistical analysis is restricted to factors that either directly
vary as a function of the experimental manipulation, for
instance, distinguishing a novelty P3 from a classical P300
(Spencer et al., 1999), or that can unambiguously be related
to known ERP components evident in the averaged
waveforms (e.g., Kayser et al., 1997, 1998, 1999, 2000a,
2001). Based on similar considerations, Dien et al. (2003)
related parametric measures of expectancy and meaning-
fulness to factors extracted in a semantic comprehension
task. Fabiani et al. (1987) have also emphasized that
determining the number of components to rotate, and
deciding how many to interpret, are two separate choices,
and strongly encouraged investigators to closely examine
“the time course of the component, its scalp distribution,
and its response to experimental manipulations” (p. 28) to
safeguard against component overinterpretation and mis-
indentification.

1.3. Theoretical rationale

It is unclear which of the general guidelines and concerns
are of relevance to ERP component definition using PCA.
Few efforts have been made to specifically develop or
validate the empirical relevance of such recommendations
to the problem of identifying and defining meaningful,
interpretable ERP components (Chapman and McCrary,
1995; Dien, 1998a; Glaser and Ruchkin, 1976; Picton et al.,
2000). Specifically, it is not obvious that methods suited to
psychometric data are equally suited to summarize the
topographic organization of intercorrelated time series data
comprising ERPs. There may be useful, important and
empirically verifiable applications of PCA which are
irrelevant or inappropriate in other contexts. Similar
methods have been used to identify and remove high-
variance components from the data, for example,
eliminating EEG artifacts related to blinks (Berg and
Scherg, 1994; Neurosoft, 2001).

The usefulness of the extracted PCA factors can be
evaluated by specific knowledge about the variance
distribution of ERPs, which are typically characterized by
the removal of baseline activity. The variance should be
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small for sample points before and shortly after stimulus
onset, both across cases (i.e., for any particular sample point
across waveforms) and within cases (i.e., across sample
points for each waveform). In contrast, the variance should
be large near the end of the recording epoch, which reflects
the autocorrelation of EEG time series data. An analogy for
this property is the movement of a swinging rope that has
been grasped in one hand. The movements of the rope are
constrained by the grasping hand, comparable to the
ongoing EEG activity constrained by the baseline. Aside
from the baseline, signal variance should be larger at ERP
component peaks (global field power; e.g., Lehmann and
Skrandies, 1980). Furthermore, ERP component amplitudes
are expected to vary as a function of the experimental
manipulation and/or between different subjects. Whereas
the factor loadings of a PCA based on the covariance matrix
preserve this information, it is lost with a correlation matrix
that assigns equal weights to each sample point, yielding the
possibility that small but systematic variations may form a
factor. Such small and rather uninformative systematic
variations are likely to occur during the baseline period, or
shortly after its end, which typically coincides with stimulus
onset. For instance, if the ERPs comprise a small CNV or
anticipatory drift, the baseline correction (i.e., subtracting
the mean of all sample points within the baseline interval
from the entire waveform) will force the drift to intersect
with the baseline at a fixed sample point – exactly at half
the duration of the baseline period in case of a linear drift.
Other small but systematic ERP variations may also occur
during the recording epoch, for example, originating from
particular recording characteristics such as digitization
mode, filter settings, ‘random’ digitizer noise, etc. Using a
correlation matrix for factor extraction will exaggerate
contributions of negligible amplitude, and may therefore
obscure the underlying ERP component structure, which the
set of extracted factors is intended to reflect.

We evaluated these considerations with simulated and
real ERP data by comparing the PCA solutions resulting
from either a covariance or a correlation association matrix.
Factor extraction was followed by Varimax rotation to
achieve simple structure by means of minimizing the
number of time points with high loadings on a factor,
thereby enhancing the interpretability of the extracted
factors, and at the same time avoiding the interpretational
uncertainties of correlated components. As some statistical
packages apply a standardization of factor loadings by
default (e.g., the SPSS procedure MANOVA can be used to
perform a covariance-based PCA; SPSS, 1988), effectively
scaling (normalizing) PCA components before rotation, this
specific extraction/rotation procedure was also included in

the comparison of real ERP data.2 Furthermore, we syste-
matically varied the number of components to be extracted,
ranging from the maximum limitation of one to an
unrestricted solution (i.e., number of input variables), to
address the potential risks of factor over- or underextraction
(e.g., Everett, 1983; Fava and Velicer, 1992, 1996; Wood et
al., 1996) for real ERP data, and determine the optimal
number of factors to be retained before rotation.

2. Methods

2.1. Simulated ERP data

Our theoretical considerations prompted us to construct
artificial data sets that would clearly distinguish the
operational properties of a covariance- versus correlation-
based PCA. An invariant, pseudo ERP waveform template
(128 sample points, 100 samples/sec, 200 ms baseline) was
used to generate two simulated data sets for 30 ‘electrode
sites,’ applying the EEG montage used in our laboratory
(e.g., Kayser et al., 2000a, 2001), and 20 ‘participants’ (see
Fig. 1). The template consisted an early negative ‘com-
ponent’ with an amplitude of -8 :V peaking at 110 ms
(sample point 32), and a symmetrical, linear rise and fall
spanning an interval of ±50 ms (±5 sample points), and a
late positive ‘component’ with an amplitude of +12 :V
peaking at 450 ms (sample point 66), and a symmetrical,
linear rise and fall spanning an interval of ±210 ms (±21
sample points). A ‘topography’ was introduced by scaling
the template for selected sites with a factor of 0.5 (fronto-
polar sites Fp1, Fp2), 0.8 (frontal coronal plane F7, F3, Fz,
F4, F8), 1.2 (medial-central sites C3, Cz, C4), and 1.0 for
the remaining 20 sites. In addition, a constant, low-voltage
offset of -0.01 :V was applied to the pre-stimulus baseline
at every other electrode, spanning an interval of -200 to -50
ms (first 15 sample points; see inset in Fig. 1A). The second
simulated data set was created by adding random noise
(range ±0.25 :V, uniform distribution) to each sample point
in each waveform of the first simulated data set. As the
noise exceeded the amplitude of the constant offset, the
offset was completely obscured in the second simulated data
set (see inset in Fig. 1B), while the two components of the
template and its topography were preserved.

Each simulated data set was submitted to two temporal

2 To clearly distinguish this extraction method from the regular use
of the covariance matrix, we will refer to these two procedures as
standardized and unstandardized covariance-based PCA solutions.
However, when these two covariance-based procedures are not
directly compared, we have omitted this additional descriptor to
improve readability. In this case, a covariance-based solution
always refers to the unstandardized covariance-based PCA.
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Fig. 1. Grand mean waveforms at four ‘electrode sites’ (Fp1, Fz, Cz, Pz)
for simulated ERP data (A) without and (B) with random noise (range
±0.25 :V) added to each sample point. Waveforms were created from an
invariant waveform template (128 sample points, 100 samples/sec, 200 ms
baseline). A ‘topography’ was introduced by scaling the template for
selected sites with a factor of 0.5 (e.g., Fp1), 0.8 (e.g., Fz), 1.2 (e.g., Cz),
or 1.0 (e.g., Pz). At every other electrode, a constant, low-level voltage
offset (-0.01 :V) was systematically applied to portions of the
pre-stimulus baseline (i.e., from -200 ms to -50 ms). Insets show
enlargements of the baseline period (-200 ms to 0 ms) at a different scale,
revealing that the constant, low-level baseline offset at ‘sites’ Cz and Pz
is present for the noise-free simulation, but lost for the simulated data set
with added noise.

PCAs using either the covariance matrix or the correlation
matrix for factor extraction. BMDP statistical software (4M;
Dixon, 1992) was used for all PCA computations. Variables
consisted of 128 sample points (-200 to 1,070 ms),
representing the data matrix columns, while the data matrix
rows consisted of 600 cases stemming from the product of
‘participants’ (20) and ‘electrode sites’ (30). Both
covariance- and correlation-based PCA were followed by
unrestricted Varimax rotation. Factor loadings of the four
PCA solutions were plotted and compared to the original
template.

2.2. Real ERP data

For this systematic comparison, we reanalyzed ERP data
of healthy adults previously collected in our laboratory.
ERPs were from 30 scalp locations using a nose tip
reference with an Fpz ground, and impedances maintained
at 5 kS or less (Kayser et al., 2000a, 2001). EEG gain was
10,000. Data were sampled at 100 Hz with a .01 to 30 Hz
band pass. Recording epochs of 1,280 ms (200 ms pre-
stimulus baseline) were extracted off-line and digitally low
pass filtered at 20 Hz.

Visual ERPs of 16 right-handed control participants (7
men; mean age = 27.3 ±8.6 years) were collected during a
hemifield paradigm, in which negative and neutral stimuli
(medical textbook pictures showing face areas before or
after surgical treatment of dermatological disorders) were

briefly exposed for 250 ms to either the left or right visual
field. Stimuli were presented with variable interstimulus
intervals (range 12 to 18 s, mean = 15 s). Participants were
instructed to attend to the lateralized stimulus presentations
while maintaining fixation, however, no manual response or
any specific cognitive operation was required (for
methodological details, objective and rationale, see Kayser
et al., 2000a). Fig. 2 reveals the ERP topography and
component structure of this paradigm, in which the surface
potentials are characterized by: (1) a central N1 with a peak
latency of about 150 ms; (2) a strongly right-lateralized
P1/N2 complex over inferior-parietal sites (cf. P8 and P10),
peaking at 120 and 220 ms, respectively; and (3) a
prominent mid-parietal P3 peaking at site Pz at 480 ms. Fig.
2B also shows enhanced P3 amplitude for negative
compared with neutral stimuli, which was greatest over
right lateral parietal sites.

Auditory ERPs of 32 right-handed volunteers (18 men;
mean age = 35.3 ±11.9 years) were collected during tonal
and phonetic oddball tasks. Participants listened to a series
of either two complex tones or two consonant-vowel
syllables (250 ms stimulus duration, fixed interstimulus
interval of 1,750 ms), and responded to infrequent target
stimuli (20% probability assigned to one of the two stimuli
in the series) with either a left or right button press (for
methodological details, objective and rationale, see Kayser
et al., 1998, 2001). The ERP component structure generated
by these auditory tasks was fundamentally different from
that found with the visual-half field paradigm. For target
stimuli, the most distinctive components were: (1) a central
N1 peaking at approximately 100 ms; (2) an N2 peaking
around 220 ms, which was characterized by task-dependent
regional hemispheric asymmetries (right-larger-than-left
over frontotemporal sites for tonal stimuli, left-larger-than-
right over parietotemporal sites for phonetic stimuli); and
(3) a mid-parietal P3b peaking between 340 and 420 ms
(waveforms are given in Kayser et al., 2001).

By changing the computational instructions3 of BMDP
program 4M (Dixon, 1992), three extraction methods and

3 The critical BMDP syntax consisted of command variations in
the /FACTOR paragraph of program 4M. Principal components
analysis (METH = PCA) was combined with the request for
factoring either the covariance matrix and to use unstandardized
loadings (FORM = COVA), the correlation maxtrix (FORM =
CORR), or the covariance matrix and to use standardized loadings
(FORM = COVA and LOAD = CORR). The maximum number of
factors obtained was determined by the number command (NUMB
= #). All other BMDP statements were identical, including the
request for Varimax rotation (METH = VMAX) in the /ROTATE
paragraph (Dixon, 1992).
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Fig. 2. Grand mean ERP waveforms to visual stimuli for 16 healthy adults at 30 scalp locations (A), averaged across all experimental conditions (data from
Kayser et al., 2000a). The inset shows the grand mean (GM) across all recording sites. To clarify the ERP component structure, waveforms were enlarged
and separately plotted for negative and neutral stimuli at representative sites Cz, P7, and P8 (B), where P1, N1, N2, and P3 were prominent when using
a nose reference. ERP differences of emotional content, the main objective of this previous study, were clearly evident between 400 and 700 ms, and larger
over right (P8) than left (P7) lateral-parietal sites. N2, the most distinct ERP component at these sites, revealed a marked right-larger-than-left hemispheric
asymmetry.

110 extraction/retention criteria were systematically
combined to perform a total of 330 temporal PCAs on each
real data set. Factors were extracted and Varimax rotated
using either: (1) the covariance matrix and unstandardized
factor loadings; (2) the correlation matrix; or (3) the
covariance matrix and standardized factor loadings. The
number of components to be extracted and retained for
rotation was varied between 1 (maximum restriction) and
110 (unrestricted solution only limited by the number of
input variables). Data matrix columns (variables) consisted
of 110 sample points (-100 to 990 ms), whereas data matrix
rows consisted of 1920 or 3840 cases (visual and auditory
data sets, respectively) resulting from the combination of
participants (16/32), conditions (4/4) and electrode sites
(30). For all PCA solutions, factors were described by the
time courses of their factor loadings and the topographies of
their factor scores. Hence, all factor loadings and all factor
score topographies were plotted and compared to the
corresponding grand mean waveforms, applying common

ERP knowledge and the theoretical considerations outlined
in the introduction.

3. Results and discussion

3.1. Simulated ERP data

Fig. 3 directly compares the PCA solutions for the two
simulated ERP data sets using either a covariance or a
correlation matrix for factor extraction. As can be seen from
Fig. 3A, the first covariance-based factor (solid line)
explained effectively all the data variance for the simulated,
noise-free data, which is an almost exact representation of
the true variation introduced to this data set by jointly
scaling the ERP template. Moreover, the shape of the
component waveforms also reflects the shape of the tem-
plate. It is important to note that the shape of the loadings
vector is not a simple copy of the template, as the grand
mean is removed when factoring the covariance matrix, but
rather reflects the variance around that template. As no
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Fig. 3. Time courses of factor loadings for the initial PCA factors
extracted (up to five) from the covariance (solid lines) or correlation
(dashed lines) matrix for simulated ERP data without (A) and with noise
(B). The percentage of explained variance after Varimax rotation is
indicated at the right of each loadings vector (values for covariance-based
loadings are plotted above the baseline, correlation-based loadings are
plotted below). Note that only two factors were extracted in the
covariance-based PCA for simulated ERP data without noise, but 41
factors in the correlation-based PCA using the same data. For simulated
ERP data with noise, 78 factors were extracted for both extraction
methods.

additional noise was included in this data set, all variance
stems exclusively from the ‘topographic’ differences
between selected electrodes, which were introduced by
linear scaling of the template. As a direct consequence of
the linear scaling, differences from the original template are
larger in absolute terms at ‘component’ peaks, and gradually
decrease along the rising and falling slopes.

In contrast, the correlation-based PCA produced a first
component (dashed line) that merely indicates the direction
but not the variance shape, resulting in two loading
rectangles: the first rectangle had a constant amplitude of -
1.0 and spanned exactly the time period of the simulated
component N1, whereas the second rectangle had a constant
amplitude of +1.0 and spanned exactly the time period of
the simulated component P3. Likewise, a second factor had
a constant amplitude of -1.0 and an onset and duration that
exactly matched the constant, low-level offset introduced to
the baseline. A correlation-based PCA does not distinguish
between small and large variations of different variables
(time points), provided they are linearly related.

The amount of variance explained by the first two corre-
lation-based factors was 48.08% and 14.42%, respectively.
This approximates the proportion of the number of variables
used for simulating N1 and P3 (50) and the low-level
baseline offset (15) with respect to the total number of
submitted variables (128), but disproportionally reflects the
absolute amount of variance introduced by these two
independent variations. In addition, the correlation-based
PCA extracted another 39 factors, the first three are shown

in Fig. 3A as factors 3 to 5, each explaining 0.96% variance
and having a loading of +1.0 that spanned exactly one
variable, apparently randomly assigned to variables outside
the loading range of factor 1 and 2. It is obvious that these
additional factors are a mere artifact of the need to explain
another 37.5% variance which remains unexplained after
extraction of the first two factors.

The PCA solutions performed on the simulated data with
added noise when factoring either the covariance- or corre-
lation matrix are compared in Fig. 3B. Each of the two
unrestricted solutions extracted a total of 78 factors. Again,
the first covariance-based factor explained most of the data
variance (94.52%), closely matching the introduced varia-
tion, and its time course closely approximated the intro-
duced variance shape. However, no distinct second covari-
ance factor was extracted that could be related to the low-
level baseline offset. Evidently, this systematic variation
was completely obscured by the added noise. Rather, each
of the additional 77 factors explained less than 0.1%
variance, gradually decreasing to 0.06%, and had loadings
peaks of small amplitude scattered across the recording
epoch (see solid lines for factors 2 to 5 in Fig. 3B).

In contrast, the first correlation-based factor explained
45.78% variance, with a time course that resembled that of
the simulated, noise-free data (dashed line in Fig. 3B).
However, rising and falling edges of the rectangles were
notable curved, which appeared to be a logical consequence
of those time periods when the random noise exceeded or
equaled the signal. In other words, the noise smoothed the
loading shape and feigned a true loading peak, and this
effect would be exaggerated by further lowering the signal-
to-noise ratio. The remaining 77 factors explained 1.07% or
less variance, gradually decreasing to 0.01%, and had again
single, isolated loadings with an amplitude of approximately
+1.0, dispersed over the recording epoch (see dashed lines
for factors 2 to 5 in Fig. 3B).

3.2. Real ERP data (visual modality)

3.2.1. Component waveforms of PCA solutions

An overview of the different Varimax-rotated PCA
solutions derived from real ERP data collected during the
visual half-field paradigm is given in Fig. 4. The left panel
(Fig. 4A) shows up to the first ten component waveforms
that were obtained after factoring the covariance matrix of
the raw data, ordered across columns in the sequence of
extraction. Ordered across rows are the solutions derived by
systematically varying the number of factors to be extracted
(using this systematic, individual component waveforms
will be referred to by their row and column number).
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Fig. 4. Overview of PCA solutions for real ERP data (visual task). Varimax-rotated factor loadings are plotted in their extraction sequences
(along columns and up to the first 10 factors extracted) for PCA solutions based on the (A) covariance matrix using unstandardized
loadings, and (C) the correlation matrix (solid lines) or the covariance matrix using standardized loadings (dashed lines). PCA solutions
are ordered (along rows) by the extraction criterion (i.e., the number of factors to be extracted and retained before rotation). Note that
for this data set 109 factors were sufficient to completely explain the data variance produced by 110 input variables. Insets show overlaid
factor loadings of a single component (factor 3, approximate peak latency 250 ms) for restricted (#12) and liberal ($20) extraction criteria
for (B) covariance-based and (D) correlation-based solutions.

A closer look at the first column reveals that all solutions
extracted a high variance factor that extended over a
relatively long time period with higher loadings towards the
end of the recording epoch. However, the shape of the
loading vector of this first factor changed depending on the
extraction limit, which is particularly obvious when
comparing conservative solutions (e.g., see component
waveforms 1-1, 2-1, and 3-1 in Fig. 4A). In a similar
manner, the second factor revealed, for all solutions,
loading peaks at approximately 450 ms, which changed
shape for more restrictive solutions (see component
waveforms 2-2, 3-2, and 4-2 in column 2 of Fig. 4A). The
third factor peaked for all solutions at approximately 250
ms. Fig. 4B (left panel inset) compares the different
solutions for factor 3 by overlaying all component
waveforms for extraction limits of 3 to 12 total factors (i.e.,
more restricted solutions), and also overlaying all
component waveforms for extraction limits of 20 or more

total factors (i.e., more liberal solutions). As can be seen,
there is considerable variation between more restricted
solutions, whereas the component waveforms of factor 3 are
practically identical for more liberal solutions.

For low variance components (i.e., for factors extracted
after the first three components), fluctuations of shape and
position within the extraction sequence were observed.
Despite this inconsistency, some components could be
identified without difficulty by their unique loading peak
across the different solutions (e.g., one distinct factor with
an approximate peak latency of 170 ms can be recognized
in component waveforms 5-5, 20-5, and in column 4 for the
remaining solutions shown in Fig. 4A). By-and-large,
component waveforms tended to become more stable with
more liberal extraction criteria. This was notably the case
for all of the first ten components when applying an
extraction criterion of 30 or more factors – there were no
differences in shape or extraction sequence between these
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Fig. 5. Eigenvalues for the first ten factors extracted from the unrestricted
covariance- or correlation-based PCA solutions, plotted as fractions of
overall variance after Varimax rotation. The arrow indicates the Scree-test
cutoff-criterion for the corresponding slope of Eigenvalues of the
covariance matrix before rotation.

Fig. 6. Similarity of factor scores as a function of extraction criterion
(number of factors to be extracted) for covariance- and correlation-based
PCA solutions, illustrated for factor 3. Similarity is expressed as the sum
of squared differences from the unrestricted solutions (109 extracted
factor), summed across all cases (1920) for visual ERP data. Data range
from 1,414.23 to 0.000002, and are shown on a common logarithmic
scale. Factor scores continue to become more stable and more similar with
more liberal extraction criteria, until they converge on the unrestricted
solution.

solutions. A total of 109 components was sufficient to fully
account for the data variance of this particular data set with
110 input variables (i.e, the PCA allowing the extraction of
110 components extracted exactly the same 109 factors).

Fig. 4C shows the equivalent PCA solutions when either
the correlation matrix was factored and rotated (solid lines),
or the covariance matrix was factored but standardized
loadings were rotated (superimposed dashed lines). On the
whole, there were only marginal differences between the
PCA solutions derived from these two extraction/rotation
methods: almost none were found for liberal extraction
criteria (30 or more factors extracted), and the few notable
differences were mainly observed for more conservative
extraction criteria and towards the end of the extraction
sequence (e.g., see component waveforms 2-2, 3-3, 4-4, and
5-5).

By comparing the correlation-based PCA solutions (Fig.
4C) to their covariance-based counterparts (Fig. 4A), it
becomes clear that the first three factors target the same
variance: all extracted a high-variance component as factor
1, followed by two factors with approximate peak latencies
of 450 and 250 ms. However, when compared to the
covariance-based solutions, the correlation-based
components always had a wider, less focused loading peak,

which was frequently accompanied by significant secondary
loadings. These undesirable characteristics are prominent
for factor 3, particularly for more conservative solutions
(Fig. 4D top, as compared to 4B top). Nevertheless,
correlation-based PCA solutions also become more stable
with more liberal extraction criteria. For example, the shape
of the component waveforms of factor 3 did not change for
an extraction criterion of 20 or more factors (Fig. 4D
bottom).

The most striking difference between the unstandardized
covariance-based PCA solutions and the correlation- or
standardized covariance-based solutions was the presence
of factors with multiple and inverted loading peaks of short-
latency, some of which occurred during the baseline period
(cf. component waveforms in columns 4 to 6 of Fig. 4C).
These factors were even present in the most stable,
unrestricted solution (component waveforms 109-4 and
109-6 of Fig. 4C), and also explained a considerable
proportion of variance (i.e., 5.25% and 4.46% for factors 4
and 6, respectively, after Varimax rotation; see Fig. 5).

3.2.2. Component topographies of PCA solutions

To compare the associated factor score topographies of
related components for each of the different PCA solutions,
both within extraction methods (covariance or correlation
matrix) as well as across the two methods, squared
differences between factor scores of two solutions were
summed across all cases. As illustrated for the scores of
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Fig. 7. Topographies of factor scores (A, B) and superimposed factor loadings (C, D) for the first ten components of the unrestricted PCA solutions using
real ERP data recorded from 16 healthy adults during a visual half-field paradigm (Kayser et al., 2000a). Shown are the solutions based on the covariance
matrix (A, C) and the correlation matrix (B, D). Factors are labeled using the peak latency of the loadings, but topographies of factor scores (top view, nose
upwards) are ordered according to their extraction sequence (left to right, top to bottom).

factor 3, Fig. 6 shows this similarity measure as a function
of the number of extracted factors for the within-methods
comparison, computed using the differences from the
unrestricted solutions. By plotting the slope of this function
on a common logarithmic scale, it becomes clear that factor
scores continue to become more stable and more similar
with more liberal extraction criteria for both extraction
methods, until they converge on the unrestricted solution.
However, for all practical purposes, differences in factor
scores are negligible (103 reduction) for this data set after
the extraction of 20 or more factors. Comparable functions
were observed for all factors, revealing the same pattern of
convergence. Moreover, the similarity functions between
extraction methods (i.e., using the differences between
covariance- and correlation-based solutions for each
extraction criterion) also indicated an increase of similarity
with more liberal extraction criteria, until differences
between methods stabilized on a negligible (105 reduction)

level after the extraction of 40 or more factors.
Fig. 7 shows the factor score topographies for the first ten

components of the unrestricted PCA solutions, along with
superimposed plots of their factor loadings. As a direct
result of the increased similarity, the most remarkable
observation is that eight of these initial ten components
revealed almost identical factor score topographies across
extraction methods (Fig. 7A and 7B), although correspon-
ding factors differed in peak latency (Fig. 7C and 7D),
explained variance (Fig. 5), and position within the
extraction sequence (Fig. 4). For example, factor 4 of the
covariance matrix and factor 5 of the correlation matrix
were both characterized by a peak latency of 170 ms, and a
mid-central negativity paired with an occipital positivity
(Fig. 7A and 7B), thereby closely corresponding to a central
N1 which inverted at occipital sites (Fig. 2). Analogously,
factors 1 to 3 revealed topographies closely corresponding
to a mid-central positive slow wave, a posterior P3, and a
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right-lateralized posterior visual N2 for both extraction
methods, despite differences in shape and peak latency (Fig.
7C and 7D). Even low-variance factors were paired across
extraction methods, some of them apparently related to
various phases of P3 activity (covariance peak latencies of
330, 560, and 640 ms), although not all were among the first
ten components extracted. Evidently, by enforcing simple
structure, the Varimax algorithm will rotate factors of
different extraction methods to a unique solution, if the
number of vectors to rotate is sufficiently large to reallocate
the loadings accordingly. Once identical or almost identical
component waveforms are established, irrespective of their
origin, the same associated factor scores are generated.

Factor 7 of the covariance matrix (peak latency 130 ms)
and factor 9 of the correlation matrix (120 ms) were
characterized by a distinct right-larger-than-left posterior
positivity paired with posterior midline negativity, which
was clearly related to early P1 activity (cf. sites P9 and P10
in Fig. 2). It is important to note, however, that this distinct
activity was not extracted as a unique component unless 20
or more factors were extracted and rotated (Fig. 4A and
4C). Thus, most common rules to determine the number of
factors to extract, retain, or interpret would have precluded
the formation of this factor. Applied to the correlation
matrix, the Eigenvalue-larger-than-one rule would only
retain the first 14 factors. The arrow in Fig. 5 indicates the
Scree-test cut-off criterion for the covariance-based
solution, revealing that only the first 3 factors would have
been retained, therefore also missing the N1 factor.

The most glaring problem of the correlation-based
solutions is the extraction of irrelevant, high-variance
components, exemplified for the current data set by two
factors with positive and negative loading peaks of
maximum amplitude before or immediately after stimulus
onset (see factors labeled -70 and 10 in Fig. 7D). As
demonstrated by the correlation-based PCA of the simulated
ERP data, the most likely cause is systematic, low-
amplitude signal around stimulus onset, which in these
cases inverted in polarity.

To fully comprehend the spatiotemporal dynamics of the
extracted components, one needs to simultaneously
appreciate the topographic information provided by the
factor scores with regard to the duration the overlapping
component waveforms. While this mental transformation
can be accomplished by close scrutiny of their static two-
dimensional representations (e.g., Fig. 7A and 7C), the
spatiotemporal dynamics become intuitively obvious by
virtue of the linear decomposition of the association matrix,
which allows a time series of factor score topographies to be
reconstructed by simply multiplying the factor loadings

vector with the mean of the associated factor scores. An
animation of such a time series created for the covariance
data presented in Fig. 7A and 7C reveals the distinctive
spatiotemporal sequence of P1, N1 and N2, and further
clarifies the temporal overlap, however, topographic
specificity, of factors corresponding to various phases of the
late positive complex.4

3.2.3. Statistical implications of different extraction criteria

The most important question for practical research
purposes is whether the observed differences for identified
components, which may be quite small at times, have an
impact on statistical tests commonly used to evaluate
variation across electrodes, conditions, and subjects. Using
high-variance factors corresponding to ERP components of
critical interest for the Kayser et al. (2000a) study (i.e., N2
and P3), we systematically computed separate ANOVA
reflecting the study design for each factor and each
covariance- and correlation-based PCA solution. The
resulting F statistics were compared for representative
experimental effects crucial for the objective of the study.
As an illustration, Fig. 8 gives the F values of four effects
as a function of extraction criterion. The direction of these
effects did not change with any extraction method, and can
be inferred from Fig. 2B. The greater P3 amplitude to
negative than neutral stimuli, as measured by factor 2, was
significant (F[1,14] > 4.60, p < .05) for covariance-based
solutions (filled circles in Fig. 8A) for all but the most
restricted extraction. In contrast, this main effect was
insignificant for correlation-based solutions (open triangles
circles in Fig. 8A) for strict conservative extraction criteria
(for 4 or less factors extracted, all F[1,14] < 3.10, p > .10),
only marginally significant for somewhat relaxed extraction
criteria (for 5 to 9 factors extracted, all F[1,14] < 4.60, p <
.10), and equaled or just exceeded a conventional
significance level for liberal extraction criteria (for 10 or
more factors extracted, all F[1,14] $ 4.60, p # .05). The N2
asymmetry, as measured by factor 3 (Fig. 8B), found no
statistical support with conservative extraction criteria (for
7 or less factors extracted, all F[1,14] < 3.10, p > .10), but was
significant with more liberal criteria (for 13 or more factors
extracted, all F[1,14] > 4.60, p < .05) for solutions of either
association matrix. However, intermediate extraction
criteria (8 to 12 factors extracted) yielded significant results
for covariance-based solutions (all F[1,14] > 4.60, p < .05),
but insignificant or marginally significant results for

4 This animation can be viewed and obtained at the following
URL: http://psychophysiology.cpmc.columbia.edu/cn2003.html



Clinical Neurophysiology, in press 13

Fig. 8. Statistical effects (F values) of analyses of variance (ANOVA) performed on covariance-and correlation-based PCA factor scores as a function of
extraction criterion (number of factors to be extracted). For all analyses, gender was a between-subjects factor (N = 16, 7 male), and emotional content
(2), visual field (2), hemisphere (2), and site (3 homologous electrode pairs as indicated in parentheses) were within-subjects factors (cf. Kayser et al.,
2000a). Shown are critical F tests (all df = 1,14): for factor 2 (P3), the emotional content main effect (A); for factor 3 (N2), the hemisphere main effect
(B); and for both factors, the Emotional Content V Hemisphere interaction effect (C, D). Dashed lines indicate F values corresponding to conventional
significance levels of .05 and .10. Note that with more conservative extraction criteria, the F statistic of any given effect is highly variable and may or may
not attain statistical significance, despite factors 2 and 3 representing high-variance components. In contrast, statistical effects become very stable with
more liberal extraction criteria (25 or more factors extracted). The abscissa break between 35 and 105 extracted factors indicates the omission of redundant
F values.

correlation-based solutions (all F[1,14] < 4.60, p > .05).
Likewise, the lateralized emotional content effect for P3, as
measured by factor 2 (Fig. 8C), randomly crossed the
conventional .05 threshold for covariance-based solutions
when fewer than 27 factors were extracted, for instance,
approaching a .01 significance level for 6 factors extracted
(F[1,14] = 8.60, p = .011), and almost dropping to .10 for the
solution restricted to 16 factors, before settling on a .05
significance level for all other liberal extraction criteria. For
correlation-based solutions, this important interaction even
varied between significance (for 3 and 4 factors extracted,
F[1,14] > 4.60, p < .05) and non-significance (for 2 and 6 to
9 factors extracted, all F[1,14] < 3.10, p > .10) for more

conservative solutions, before also settling on a .05
significance level for more liberal extraction criteria.
Conversely, an Emotional Content V Hemisphere inter-
action effect was effectively nonexistent in the F statistics
for  factor 3 (Fig. 8D) for solutions of either association
matrix when more than 12 factors were extracted, but
attained notable F values when extraction was limited to 6
or 10 factors for covariance-based solutions (both F[1,14] >
2.10, p < .17), or to 5 and 7 to 9 factors for correlation-
based solutions (all F[1,14] > 2.20, p < .16).

Thus, as the factors converged towards the unrestricted
solution, statistical effects also converged on a stable level,
which was accomplished for the present data set when 30 or
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more factors were extracted, corresponding to 99.64%
explained variance for the covariance-based solution
(99.50% for the correlation-based solution). It should be
noted that when extracting as many as 23 factors (98.96%
and 98.60% data variance), the F statistic was still not
stable (e.g., Fig. 8C). Statistical effects for the covariance-
based solutions were generally stronger than those for
correlation-based solutions, if these effects were also
significant for the unrestricted solutions (Fig. 8A-C);
analogously, statistical effects tended to be weaker for
covariance- compared with correlation-based solutions if
the F tests of the unrestricted solutions were insignificant
(Fig. 8D). As these statistical analyses typically form the
basis for interpreting experimental findings, this remarkable
observation implies that failing to effectively explain all the
data variance could lead a researcher to over- or
underestimate effects of interests, missing the goal of
accurately measuring relevant ERP components. This
problem is move severe with correlation- than covariance-
based solutions, which may result from a less-efficient
description of the sequential organization of ERP variance,
particularly with respect to the experimental conditions.

3.3. Real ERP data (auditory modality)

The different Varimax-rotated PCA solutions derived
from auditory ERP data collected during tonal and phonetic
oddball tasks revealed the very same principles. Due the
completely different nature of this ERP paradigm (e.g.,
modality, response requirements, cognitive demands,
procedural characteristics, etc.), different task-specific
factors were extracted (e.g., Kayser et al., 2001). However,
along the sequence created by extraction procedures and
criteria, these PCA components similarly converged
towards an unrestricted solution, which was again found to
be the most stable one. Since the general and statistical
properties of these solutions were identical to those already
described for the visual ERP data set, these additional
analyses for auditory data are not further detailed in this
report.

4. General discussion

The implications of the reported observations for temporal
PCAs using Varimax rotation to achieve simple structure
are straightforward. First, factor underextraction may be a
serious problem, since limiting the number of components
changed the morphology of some components considerably.
On the other hand, overextraction was not a concern, since
more liberal or even unlimited extraction criteria did not
degrade or change high-variance components, which is in

close agreement with previous Monte Carlo studies (Wood
et al., 1996). Instead, their interpretability was improved by
more distinctive time courses with narrow and unambiguous
peaks (i.e., low secondary loadings). Moreover, some
physiologically meaningful ERP components, either small
in amplitude, or topographically localized, or both (e.g.,
P1), may have a PCA equivalent, which cannot be extracted
with restricted solutions due to their low overall variance
contributions. Thus, whenever computational constraints are
not an issue, unrestricted PCA solutions, or solutions
explaining almost all the variance (> 99%), are the
preferable choice.

Second, unstandardized covariance-based factors had
more distinctive time courses (i.e., lower secondary
loadings) than the corresponding correlation-based factors,
which allowed a better interpretation of their
electrophysiological relevance. Moreover, correlation-based
solutions were likely to produce artificial factors that merely
reflected small but systematic variations, for instance, when
the ERP waveforms intersected the baseline. While such an
artifact may be easily recognized as such during the
baseline, similar small, systematic variations may also be
present throughout the recording epoch, but then with less
justification to be discounted. Including the baseline within
the submitted data appears to be a reasonable
methodological choice to direct attention to the extraction
of spurious PCA components. Standardizing
covariance-based PCA factors before rotation, a default
operation in some statistical software packages,
approximated correlation-based solutions, and ultimately
yielded the same coefficients (factor loadings) when all
components were rotated. Thus, PCA solutions based on the
covariance matrix using the unstandardized components for
rotation are clearly preferable over correlation-based
solutions and extraction/rotation procedures that mimic the
latter. Apart from merely describing the type of association
matrix (Picton et al., 2000), it is strongly suggested that
investigators clearly identify the procedures and statistical
software used to perform the PCA.

Third, the differences of the extracted components
resulting from these methodological choices can have a
profound impact on the statistical analyses usually
performed on the associated factor scores to test
experimental hypotheses. Factor underextraction yielded
volatile statistical tests, whereas increasingly liberal
extraction criteria converged on a stable test statistic. The
problem is aggravated with correlation-based solutions.
While the reported observations clearly indicate that these
problems are a real concern for the specific visual and
auditory tasks considered in this report, it is currently
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unknown whether there are certain properties of other ERP
data sets (e.g., differences in effect size, sample size,
electrode montage, experimental design, etc.) that may
render these concerns unnecessary – a question that may be
addressed with suitable simulation studies. Meanwhile, one
may be inclined to substitute the various guidelines for the
number of components to extract and rotate (e.g., scree test,
Eigenvalue larger than one, parallel analysis) with the
graphical analysis presented in Fig. 8 to justify extracting
less than all possible factors. However, not every researcher
may be prepared to invest this extra effort. Since the true
number of factors granting stable statistical tests is generally
unknown, we would argue that employing an unrestricted
PCA solution is the conservative approach.

While this report has focused on temporal PCA, similar a
priori knowledge about the topographical aspects of ERP
variance can be applied to evaluate component measures
when using a spatial PCA, or a combination of both
approaches (e.g., Achim and Bouchard, 1997; Möcks,
1988a, 1988b; Spencer et al., 2001). For a spatial PCA, the
dimensions (space and time) in which an ERP component
factor is defined are parsed in a complementary fashion:
variables (matrix columns) consist of electrode locations
included in the EEG montage, whereas matrix rows consist
of time points, conditions, and participants. Factor
extraction is determined by reliable variations of topography
(space) rather than waveform (time). In this case, variance
should be relatively small at sites closer to the recording
reference, but larger at more distant scalp locations and over
scalp regions used to define individual ERP components
within the context of a specific paradigm. For example,
variance should be larger at mid-parietal sites when a
classical P3b is observed for infrequent events in an oddball
paradigm (e.g., Spencer et al., 1999), or over inferior-lateral
sites for visual N1 and N2 components when ERPs are
referenced to nose tip (e.g., Kayser et al., 1999, 2003).

The observed ERP component structure, which is evident
from the ERP waveforms, may considerably vary with
different recording references (e.g., Dien, 1998b; Kayser et
al., 2003), although the underlying generator activity
remains the same, meaning that the conceptual ERP
component structure is unchanged. Any change in reference
will also affect PCA component extraction, since the
variance is reallocated around a different grand mean
waveform. However, its sensitivity to variance rather than
to changes of peaks and troughs makes the PCA approach
less susceptible to reference changes compared to more
traditional ERP measures, such a area measurements or
peak amplitudes. It has been argued that an average
reference may avoid some of the pitfalls inherent to a single

reference (e.g., Dien, 1998b), and suggested that an average
reference best approximates a “reference-free” recording
(Lehmann, 1984; Pascual-Marqui and Lehmann, 1993;
however, see Desmedt and Tomberg, 1990; Tomberg et al.,
1990). While an average reference may provide a reason-
able compromise, it is not a universal or “reference-free’
solution, since ERP waveforms are obviously unique to the
specific recoding montage.

All PCA solutions are dependent on the characteristics of
the raw data, which will not only change with the choice of
reference but with any methodological variation (whether
deliberate or not), including the experimental paradigm,
specific procedure, stimulus modality, targeted population,
sample heterogeneity, to name just a few. For any data set,
the PCA approach will reveal the underlying variance
structure of the raw data in a systematic, comprehensive
fashion. It may be argued that by recommending use of an
unrestricted solution, the main purpose of a PCA is put ad
absurdum, namely to attain a systematic reduction of the
data dimensionality into meaningful entities. The key issue
here, however, is the term meaningful: if the extracted
factors are meaningful, PCA factors are a valuable adjunct
to conventional ERP techniques. It is the investigator’s
responsibility to justify the selection or rejection of
components for further analysis by attributing a ‘meaning’
to these components within the context of the research. This
must be guided by an understanding of the correspondence
between the time course and topography of PCA factors and
anticipated ERP components (e.g., N1, N2, P3, slow wave),
the effects of the experimental manipulations, and inter-
pretable sources of data artifacts.

Our findings clearly suggest that factor interpretation is
improved with unrestricted, covariance-based solutions. The
meaning and qualitative distinctiveness of a PCA
component cannot be decided by a statistical program,
because the amount of explained variance alone does not
make a factor meaningful. As demonstrated here for
temporal PCAs, the amount of variance depends largely on
the number of time points and the number of scalp
locations, which together define a component. Thus, early,
rather transient ERP components with a distinct topography
(e.g., N1) will necessarily explain a much smaller
proportion of the overall variance than sustained, long-
lasting components covering a broad region (e.g., a positive
slow wave). Components that summarize slow ERP activity
over a longer time period, usually towards the end of the
recording epoch (sometimes also at the beginning of the
epoch if no baseline correction was performed), may
explain a great amount of data variance, but do not
necessarily reflect meaningful ERP activity but rather
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variance associated with the grand mean waveform (Kayser
et al., 1997, 2000a; van Boxtel, 1998; Wastell, 1981).
However, as such components gather variance not systema-
tically related to the experimental manipulations, these
variance contributions are removed from other, more
meaningful ERP components, thereby clarifying the inter-
pretation of the latter factors. Depending on the
experimental question, a distinct low-variance factor may be
by far more important to the objective than high-variance
factors, which explain unsystematic variance, or variance
associated with effects of secondary interest. This
separation of meaningful variance is a very desirable
characteristic of the PCA, because when unsystematic
variance is effectively filtered from the data, it can no
longer obscure effects of primary interest.

When carefully applied with sufficient understanding of
the implications for the data, PCA can become a valuable,
general-purpose tool, serving filter functions such as
removing noise from a waveform by reassembling it from
a subset of PCA components (Sinai and Pratt, 2002), or
identifying and eliminating EOG artifacts using a spatial
PCA (Neurosoft, 2001). Likewise, components may be
recombined in a new, meaningful fashion, for instance, by
establishing a composite P3 measure, or by calculating a
PCA-based equivalent for N2-P3 amplitude (Kayser et al.,
1997, 1998, 2001).5

As with any analytic technique, ERP-PCA approaches
may have pitfalls that could result in misleading
conclusions, particularly when data include outlying cases,
temporal or spatial jitter, or have low signal-to-noise ratios
(e.g., Chapman and McCrary, 1995; Dien, 1998a; Donchin
and Heffley, 1978; van Boxtel, 1998). In this case, the
combined approach of PCA factor extraction, Varimax-
rotation, and ANOVA performed on factor scores may
result in a misallocation of variance, an issue repeatedly
addressed in the literature (Achim and Marcantoni, 1997;
Beauducel and Debener, 2003; Chapman and McCrary,
1995; Möcks, 1986; Möcks and Verleger, 1986; Wood and
McCarthy, 1984). Since a further discussion of these issues

is beyond the scope of this report, it will suffice to note that
traditional component measures are also, and more severely,
affected by these limitations (Beauducel et al., 2000;
Beauducel and Debener, 2003; Chapman and McCrary,
1995; Donchin and Heffley, 1978; Wood and McCarthy,
1984). What is ultimately worse, traditional peak and area
measures invite a more superficial data analysis, particularly
when combined with an automated scoring routine, and are
therefore less likely to alert the researcher that there may be
a serious problem with the recorded data.

Our goal is to use PCA as a heuristic tool for 1)
identifying relevant ERP components, and 2) generating
efficient measurements for temporally and spatially
overlapping components for a given data set. When applied
appropriately, PCA-based component measures are more
efficient when compared to more traditional ERP measures.
We have reported better statistical properties for PCA-based
component measures as opposed to area definitions (i.e.,
larger effect sizes; Kayser et al., 1998), and found PCA-
based measures to have by far superior reliabilities than
peak-determined amplitudes (Beauducel et al., 2000). In
particular, PCA avoids the subjectivity of selecting time
windows for components that invert across the scalp
topography, or for subjects, conditions, or recording sites
that reveal no distinct peaks within the time interval of
interest, the most glaring problem in implementing peak
amplitude and latency measures. Instead, after under-
standing the data variance, the investigator’s expertise is
required to make informed decisions regarding the
interpretation of the extracted factors.
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to the data. For instance, EEG frequency spectra contain large
amplitudes at low frequencies (more variance), converge towards
zero at high frequencies (less variance at ‘baseline’), and include
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Appendix

The proposed unrestricted, unstandardized covariance--based PCA with Varimax rotation may be compactly coded in
high-level numerical languages, including the popular MatLab (The MathWorks, Inc., 2002, MatLab Version 6.5, Release
13 [http://www.mathworks.com]). All crucial computational steps are exemplified by the MatLab routine provided below.
It is important  to note that the component weights (i.e., the factor scores) are  estimated from intermediate factor score
coefficients (rescaled with respect to the input variables; cf. lines 25-27) and the  normalized raw data (ll. 28-34). The
implemented Varimax procedure applies Kaiser’s normalization (i.e., the rows are normalized by their individual lengths)
before rotation, which is reversed after Varimax convergence. Marginal computational differences from the BMDP-4M
implementation (Dixon, 1992) are largely due to improved data precision, which affects estimates of matrix rank order (l.
8) and Varimax convergence (l. 14).

% erpPCA - Unrestricted, unstandardized covariance-based PCA with Varimax
%          rotation (cf. Kayser J, Tenke CE, Clin Neurophysiol, in press)
%
% Usage: [LU, LR, FSr, VT] = erpPCA( X )
%
% Generic PCA-Varimax implementation emulating the PCA agorithms used by 
% BMDP-4M (Dixon, 1992) and SPSS 10.0 FACTOR (http://www.spss.com/tech/
% stat/Algorithms/11.5/factor.pdf). It expects a data matrix (X) of ERP 
% waveforms, with ERPs (cases) as rows and sample points (variables) as 
% columns. The routine returns the unrotated (LU) and Varimax-rotated (LR) 
% factor loadings as a variables-by-factors matrix, the rotated factor 
% scores (FSr) as a cases-by-factors matrix, and Eigenvalues and explained 
% variance as a variables-by-variance matrix (VT), with four columns 
% consisting of Eigenvalues and percentage of explained variance before 
% and after rotation.
%
% erpPCA employs Varimax4M (max. 100 iterations, 0.0001 convergence criterion,
% Kaiser's normalization; MatLab code by $jk available on request), which 
% emulates algorithms described by Harman (1967, pp. 304-308) as implemented 
% in BMDP-4M (Dixon, 1992, pp. 602-603).
%
% Copyright (C) 2003 by Jürgen Kayser (Email: kayserj@pi.cpmc.columbia.edu)
% GNU General Public License (http://www.gnu.org/licenses/gpl.txt)
% Updated: $Date: 2003/07/08 14:00:00 $ $Author: jk $
%
function [LU,LR,FSr,VT] = erpPCA(X)
[cases, vars] = size(X);             % get dimensions of input data matrix     1
D = cov(X);                          % compute covariance matrix               2
[EM, EV] = eig(D);                   % determine Eigenvectors and Eigenvalues  3
UL = EM * sqrt(EV);                  % determine unrotated factor loadings     4
[u, ux] = sort(diag(EV)');           % sort initial Eigenvalues, keep indices  5
u = fliplr(u); ux = fliplr(ux);      % set descending order                    6
LU = UL(:,ux);                       % sort unrotated factor loadings          7
rk = rank(corrcoef(X),1e-4);         % estimate the number of singular values  8
LU = LU(:,1:rk);                     % ... and remove all linearly dependent   9
u = u(1:rk); ux = ux(1:rk);          % ... components and their indices       10
s = ones(1,rk);                      % current sign of loading vectors        11
s(abs(max(LU)) < abs(min(LU))) = -1; % determine direction of loading vectors 12
LU = LU .* repmat(s,size(LU,1),1);   % redirect loading vectors if necessary  13
RL = Varimax4M(LU,100,1e-4,1);       % Varimax-rotate factor loadings         14
EVr = sum(RL .* RL);                 % compute rotated Eigenvalues            15
[r, rx] = sort(EVr);                 % sort rotated Eigenvalues, keep indices 16
r = fliplr(r); rx = fliplr(rx);      % set descending order                   17
LR = RL(:,rx);                       % sort rotated factor loadings           18
s = ones(1,size(LR,2));              % current sign of loading vectors        19
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s(abs(max(LR)) < abs(min(LR))) = -1; % determine direction of loading vectors 20
LR = LR .* repmat(s,vars,1);         % redirect loading vectors if necessary  21
tv = trace(EV);                      % compute total variance                 22
VT = [u' 100*u'/tv ...               % table explained variance for unrotated 23
      r' 100*r'/tv ];                % ... and Varimax-rotated components     24
FSCFr = LR * inv(LR' * LR);          % compute rotated FS coefficients        25
FSCFr = FSCFr .* ...                 % rescale rotated FS coefficients by     26
   repmat(sqrt(diag(D)),1,rk);       % ... the corresponding SDs              27
mu = mean(X); sigma = std(X);        % compute Mean and SD for each variable  28
Xc = X - repmat(mu,cases,1);         % remove grand mean                      29
FSr = zeros(cases,vars);             % claim memory to speed computations     30
for n = 1:cases; for m = 1:rk;       % compute rotated factor scores from     31
 FSr(n,m) = sum( (Xc(n,:) ./ ...     % ... the normalized raw data and        32
       sigma) .* FSCFr(:,m)' );      % ... the corresponding rescaled         33
end; end;                            % ... factor score coefficients          34


