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� An algorithm was developed to identify bridged electrodes using characteristics of electrical distance
frequency distributions.

� Using this tool on five publically-available datasets, electrode bridges were detected in 54% of
sessions.

� If used routinely, this automated approach offers feedback required to protect against spatial distor-
tion and smoothing that might contaminate an EEG or ERP topography.

a b s t r a c t

Objective: EEG topographies may be distorted by electrode bridges, typically caused by electrolyte
spreading between adjacent electrodes. We therefore sought to determine the prevalence of electrode
bridging and its potential impact on the EEG literature.
Methods: Five publicly-available EEG datasets were evaluated for evidence of bridging using a new
screening method that employs the temporal variance of pairwise difference waveforms (electrical dis-
tance). Distinctive characteristics of electrical distance frequency distributions were used to develop
an algorithm to identify electrode bridges in datasets with different montages (22–64 channels) and
noise properties.
Results: The extent of bridging varied substantially across datasets: 54% of EEG recording sessions con-
tained an electrode bridge, and the mean percentage of bridged electrodes in a montage was as high
as 18% in one of the datasets. Furthermore, over 40% of the recording channels were bridged in 9 of
203 sessions. These findings were independently validated by visual inspection.
Conclusions: The new algorithm conveniently, efficiently, and reliably identified electrode bridges across
different datasets and recording conditions. Electrode bridging may constitute a substantial problem for
some datasets.
Significance: Given the extent of the electrode bridging across datasets, this problem may be more wide-
spread than commonly thought. However, when used as an automatic screening routine, the new algo-
rithm will prevent pitfalls stemming from unrecognized electrode bridges.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Topographic analyses of scalp EEG measures rely on accurate
spatial localization of the surface potentials recorded at each elec-
trode (e.g., Junghöfer et al., 1997). In most EEG studies, electrode
contact with the scalp is established via an electrolyte gel or
solution. The incidental spread of this electrolyte can cause low-
impedance electrical bridges between two or more electrodes
(Tenke and Kayser, 2001), as well as introduce marked variability
into the effective size of each scalp recording site (Greischar
et al., 2004). These problems may be further exacerbated for some
participants by perspiration, particularly in warm environments
(Kappenman and Luck, 2010). Channels can also be bridged via less
obvious mechanisms, such as physical damage to wires, plugs, or
jumpers. Regardless of their cause, electrical bridges result in spu-
riously identical, or almost identical, EEG signals at each sensor
spanned by a given bridge. Although rarely acknowledged in the
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literature, such bridges have the potential to severely distort or
spatially smooth an EEG or ERP topography, confounding conven-
tional descriptions and inferences while invalidating source local-
ization estimates (Tenke and Kayser, 2001; Greischar et al., 2004).

Electrical bridging is not readily apparent when viewing contin-
uous, epoched, or averaged data, even for a limited number of EEG
channels (e.g., 32 or less; Fig. 1). The only reliable methods in the
literature for finding bridged electrodes rely on pairwise compari-
sons between channels to find those whose signals are nearly iden-
tical. This can be accomplished by graphically superimposing two
EEG/ERP waveforms (cf. Fig. 1). However, this requires consider-
able scrutiny and diligence on the part of the researcher as well
as the willingness to invest the considerable extra time, especially
as the number of channels increases (i.e., up to 256 or more).
Unsystematic inspections using this approach, while faster and
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Fig. 1. A single sweep from dataset A32 with 6 bridged electrodes (6/32 channels: PO3, PO
Cz reference channel). Enlarged, superimposed waveforms exemplify a bridged (PO3/
difference waveforms, along with their respective EDs, quantify the degree of similarity,
foreknowledge of which channels were bridged, finding electrode bridges without any s
easier, may miss bridged electrodes. However, a direct visual com-
parison can be replaced by a systematic numerical approach based
on the temporal variance of pairwise differences between wave-
forms recorded at each electrode in a montage. The resulting elec-
trical distance (ED) measure may then be applied to facilitate the
visual identification of bridges (e.g., intrinsic Hjorth algorithm;
Tenke and Kayser, 2001).

The complete set of EDs computed from all epochs of an EEG
recording session provides an informative summary of the similar-
ity or dissimilarity of waveforms in the montage. Kayser and Tenke
(2006) outlined an artifact rejection method based on the set of
channel � channel ED matrices of every trial in an epoched record-
ing. This approach employs the ED measure as an index of similar-
ity: surface potentials obtained at neighboring sites can be
expected to be quite similar due to volume conduction. ED fre-
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7, IZ, I1, I2, PO9). Data were minimally processed (1-s epochs, baselined, with added
PO7) and a non-bridged (PO4/PO8) pair of adjacent channels. The corresponding
which can in turn be used to operationalize electrode bridging. Note that, without
ort of pairwise channel-by-channel comparison would be extremely difficult.
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quency distributions are used to identify epoch-by-epoch channel
pairs that have high dissimilarity (i.e., an unusually large ED),
therefore suggesting an underlying artifact (of undetermined
cause). The same approach can also be applied to use the expected
characteristics of frequency distributions of epoch-by-epoch EDs to
identify extremely small EDs, which should characterize bridged
electrodes.

Although the problem of electrode bridging has been tacitly
acknowledged (e.g., Luck, 2005), the prevalence of electrode bridg-
ing in the datasets contributing to the literature is unknown. More-
over, differences between recording montages or noise properties
of recording systems will affect the scale and properties of a set
of difference waveforms and their associated EDs, rendering the vi-
sual identification of bridged electrodes even more difficult when
applied across multiple recording systems. The availability of an
objective, automated detection method (i.e., a method that is not
affected by differences between acquisition systems, equipment-
or site-specific noise properties, and different recording montages)
would enable the quantification of this problem across EEG data
collected in different laboratories. The objective of this study was
therefore to identify and employ publically-available EEG datasets
to create, test and refine a new algorithm that exploits characteris-
tics of ED frequency distributions, permitting a quantitative evalu-
ation of electrode bridging both in each dataset and across
datasets.

2. Methods

2.1. Electrical distance and bridge detection

A potential difference waveform is defined as the difference be-
tween the time-varying potentials P of channels i and j, computed
as:

Pi�jðtÞ ¼ PiðtÞ � PjðtÞ

Because any two channels that are electrically bridged will have
near-identical waveforms, bridged channels can be identified as
those pairs with low-amplitude difference waveforms. The overall
amplitude of a difference waveform can be quantified by its vari-
ance over time T (temporal variance; Tenke and Kayser, 2001), de-
fined as:

EDi�j ¼
1
T

XT

t¼1
ðPi�jðtÞ � Pi�jðtÞÞ

2

The ED measure was originally implemented in NeuroScan 3.0
(Neuroscan Inc., 1993, 1995) as an electrical analogue of distance
for a Hjorth Laplacian montage (‘‘intrinsic Hjorth’’; cf. footnote 2
in Tenke and Kayser, 2001), yielding topographies sharpened over
electrical, rather than spatial, distance. The intrinsic Hjorth identi-
fies electrical bridges in averaged waveforms as flat (i.e., near-zero
ED) waveforms for bridged channels (cf. Fig. 1 in Tenke and Kayser,
2001). This approach has been successfully applied in numerous
research studies (e.g., Greischar et al., 2004; Tenke et al., 2008;
Knight et al., 2010; Hamm et al., 2012; Kayser et al., 2012) and
commercial software products (e.g., Electrical Geodesics Inc.,
2003) to identify and address problems stemming from bridged
recording channels1.
1 While the intrinsic Hjorth beta feature has been abandoned in more recent
releases of NeuroScan software, the implications of Tenke and Kayser (2001) were
recognized as a potential problem, prompting Electrical Geodesics, Inc. to incorporate
an electrical distance analog into their Netstation software at the time (Electrical
Geodesics Inc., 2003). Additional nuances of the problem were identified shortly after
by Greischar et al. (2004), but there have been no further developments since then.
When our research group recently became responsible for the oversight and analysis
of EEG/ERP data at multiple test sites, each of which used different equipment, we
decided to establish a common, standardized approach to address this issue.
2.2. EEG data

Sets of EEG recordings were obtained via an Internet search re-
stricted to those freely available for direct download or upon re-
quest. Datasets were used if: (1) they were associated with a
publication; (2) the EEG montage consisted of at least 20 channels;
and (3) at least 15 sessions were available. A session was defined as
an individual time period during which an electrode cap was ap-
plied and EEG data were acquired for at least 50 s. Five datasets,
some of which were used in more than one publication, met these
selection criteria and were accordingly used for this survey
(BCI2000; Goldberger et al., 2000; Delorme et al., 2002, 2004;
Delorme and Makeig, 2004; Schalk et al., 2004; Naeem et al.,
2006; Savran et al., 2006; Koelstra et al., 2012). These datasets
were randomly labeled A–E, with a subscript to indicate the num-
ber of channels in the montage (Table 1). Three sessions were ex-
cluded from the analyses due to flat EEG, amplifier saturation, or
non-physiological artifacts. Sets A32 (100 Hz low-pass, 50 Hz
notch), B64 (0.1 Hz high-pass, 60 Hz low-pass) and C22 (0.5–50 Hz
band-pass, 50 Hz notch) had already been filtered at the acquisi-
tion sites. Data were acquired using a variety of reference schemes,
including acquisition- or system-specific references, but all ses-
sions were re-referenced to vertex (Cz) during preprocessing. How-
ever, it should be noted that EDs are computed from pairwise
difference waveforms and that any approach that utilizes EDs is
therefore inherently reference-free and unaffected by the choice
of EEG reference.
2.3. Preprocessing

All data from a given session were imported into MATLAB
R2010a (The MathWorks, Inc., 2010; with Signal Processing Tool-
box v6.13) using EEGLAB v11.0.3.1b (Delorme and Makeig, 2004;
Vidaurre et al., 2011). The EEG data from some of the sessions were
stored in multiple files; in these cases, the data from a given ses-
sion were merged into a single data structure using the EEGLAB
pop_mergeset.m function. For three sessions in B64, the first two
files out of 14 were recorded at a different sample rate than the
other twelve files in each of those sessions and were therefore dis-
carded. Cz was the only recording site commonly used as a refer-
ence channel to appear in all 5 montages and was accordingly
chosen as the reference for all data. All data using a different refer-
ence were thus re-referenced to Cz using the EEGLAB pop_reref.m
function. All channels corresponding to recording sites that were
not an integral part of an electrode cap (e.g., Nose, EOG) were re-
moved with a custom MATLAB script. The data were then resam-
pled to 128 samples/s using the pop_resample.m function, and
FIR 0.5 Hz high-pass and 30 Hz low-pass filters were applied using
the ‘‘fir1’’ option of the EEGLAB pop_eegfilt.m function. This filter-
ing was intended to remove any high- and low-frequency noise
that might differentially affect the signal variance (i.e., EDs) across
datasets. Informal observations of both continuous data and FFT
frequency averages indicated that this filter did not cause any
noticeable distortion of the data. Finally, the continuous data were
transformed into consecutive 1-s epochs (128 samples) using a
Table 1
Core characteristics of EEG data included in current study.

DatasetNumber of channels A32 B64 C22 D32 E54

Number of subjects 16 109 9 32 5
Sessions per subject 2 1 2 1 3
Total sessions 31a 109b 18 32 13b

a 1 out of 32 sessions excluded.
b 2 out of 15 sessions excluded.
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custom MATLAB script. This epoch length was long enough to
provide sufficient samples to compute epoch-by-epoch EDs, but
short enough to permit a satisfactory number of epochs to be
extracted from each recording.

2.4. Implementation

Following the approach of Kayser and Tenke (2006), the epo-
ched data began as a channels � epochs � sample points MATLAB
matrix. A channels � channels � epochs ED matrix was then com-
puted from the epoched data, and each ED value in the matrix was
multiplied by a scale factor (100/median ED value). The set of EDs
was summarized by its frequency distribution (bin size = 0.25) and,
in order to improve reliability and resolution, the distribution was
interpolated to a bin size of .05 (cubic spline interpolation). Upon
inspection, many of the interpolated frequency distributions were
found to exhibit a near-zero local peak (Fig. 2). All of these local
peaks occurred at an ED 6 5, and the local minima that followed
these peaks all occurred at an ED 6 10. Validation against the
intrinsic Hjorth algorithm showed that this local peak was con-
fined almost exclusively to sessions with bridging. We therefore
concluded that these near-zero peaks accurately represent the ex-
tremely low EDs of bridged pairs of channels.

A formal algorithm was accordingly developed from these
observations (Fig. 3). The algorithm first creates an ED frequency
distribution and then determines the presence of a near-zero local
peak. If no such peak exists, no channels are flagged as bridged. If a
peak exists, the local minimum with an ED 6 10 following the peak
is automatically identified and set as the ED cutoff. If 50% or more
of all epochs for any given pair of channels are less than or equal to
this ED cutoff, both channels are classified as bridged. This algo-
rithm was applied to all EEG recording sessions (the Matlab code
for the algorithm and the necessary preprocessing can be obtained
at http://psychophysiology.cpmc.columbia.edu/eBridge).

2.5. Recording and segmenting parameters

To test the effects of changes to various data parameters on the
performance of the algorithm, the sample rate, number of epochs,
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Fig. 3. Flowchart overview of algorithm for detecting electrical bridging.
and epoch length from each session were altered systematically.
The sample rate was varied by resampling the continuous data
from 128 to 64 samples/s using the EEGLAB pop_resample.m func-
tion and then epoching the data (as described above). The number
of epochs was varied by semi-randomly choosing 30, 120, or 480
epochs in comparison to the initial number of epochs in all sessions
(>960). Epoch length was varied by epoching the continuous data
from each session into 0.5-, 1- or 2-s epochs and then semi-ran-
domly choosing 480 epochs to control for number of epochs.

The algorithm was then applied to every session in the sample
of public datasets, for each sample rate, number of epochs, and
epoch length. The channels labeled by the algorithm as bridged
or not bridged were compared to a benchmark produced from
the original preprocessed data (128 samples/s, all epochs included,
1-s epochs). A similarity index was then computed for every ses-
sion and comparison, defined as the sum of channels flagged as
bridged or not bridged in both the benchmark and the comparison
data, divided by the total number of channels in the montage and
multiplied by 100. An index of 100 therefore indicates complete
agreement in flagged channels between the benchmark and com-
parison data (maximum similarity) whereas an index of 0 indicates
total disagreement (maximum dissimilarity).

http://psychophysiology.cpmc.columbia.edu/eBridge
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2.6. Tests with unprocessed data

To ensure that the apparent electrode bridges found by the
algorithm were not related to the preprocessing procedures, the
raw data (i.e., the data as originally downloaded) were: 1 imported
into EEGLAB and: (1) not filtered; (2) low-pass filtered; or (3) band-
pass filtered (filters described above). The three resulting lists of
bridged channels were then compared to a benchmark list pro-
duced from the original preprocessed data and similarity indices
were calculated as described above.
2.7. Simulation of an electrode bridge

A single, preprocessed session from dataset A32 without any
bridged electrodes was selected (cf. Fig. 2; the lack of bridged chan-
nels was confirmed via intrinsic Hjorth). For each data point in
channel C3, a weighted average was calculated with the corre-
sponding point in P3 (e.g., 50% for each channel would yield an
arithmetic mean). The corresponding computation was performed
for each data point in P3. The degree of similarity between the two
EEG channels was systematically varied by repeating this process
with weightings that varied in increments of 10% between 100%
and 60% (0% and 40% for the second channel), and in increments
of 1% between 59% and 50% (41% and 50% for the second channel).
3. Results

3.1. Algorithm validation

The ED cutoffs for all sessions were validated by visual inspec-
tion of the ED distributions, noting the location of the cutoff along
the abcissa. In all cases, the ED cutoffs were placed at, or in close
proximity to, the local minimum. Validation against the intrinsic
Hjorth algorithm indicated a close agreement between the sets of
channels labeled as bridged by the two methods.

The ED frequency distributions from several sessions were di-
vided to separate those identifying bridged electrode pairs from
EDs that did not (Fig. 4). In each of these sessions, the bridged
and non-bridged distributions were unambiguously separated:
the bridged distribution accounted for the near-zero peak in the
main distribution, whereas the non-bridged distribution accounted
for the remainder.
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3.2. Total electrode bridging in datasets

Electrode bridging (percentage of sessions with any bridging;
mean percentage of bridged electrodes in the montage) was de-
tected in datasets A32 (87%; 18%), B64 (75%; 10%), and E54 (8%;
0.3%) (Table 2). More than 40% of channels were flagged as bridged
in a total of 9 sessions (5 from A32 and 4 from B64). As stated above,
these findings were not just a product of the developed algorithm,
but were verified by direct visual inspection and application of the
intrinsic Hjorth.

3.3. Recording, segmenting, and processing parameter comparisons

Table 3 lists the mean similarity indices resulting from the dif-
ferent data recording, segmenting, and processing methods in
comparison to the original benchmark bridging analysis. All com-
parisons showed overwhelming similarity (P98.7), although the
corresponding SDs varied notably.

3.4. Simulation of an electrode bridge

The simulated bridge between two channels (C3 = P3; 50%
weighting for each) was correctly identified. The algorithm only
identified nonidentical waveforms as bridged when the difference
from this simulated bridge was extremely small (<3%; cf. Fig. 5).
4. Discussion

The bridge-detection method described here provides an objec-
tive and efficient means for reliably detecting electrode bridges in
continuous EEG recordings. The algorithm exploits characteristic
features of a frequency distribution of electrical distance values
that are only present if two or more channels are bridged. It can
be easily implemented and appears to yield near-identical findings
when compared with direct visual inspection or intrinsic Hjorth.
Given that the algorithm yields comparable results when applied
to the original datasets, some of which were completely unpro-
cessed, the preprocessing methods do not seem to inflate the inci-
dence of detected electrode bridges. Furthermore, the algorithm
gives reliable results even across different recording methods and
segmenting parameters. Because the underlying ED measure is
based on pairwise difference waveforms between any two record-
ing sites, the algorithm does not depend on the EEG recording ref-
erence (for a discussion of the effects of reference choice on surface
potentials, see Kayser and Tenke, 2010). The algorithm is therefore
suitable as a generic tool to verify a critical aspect of EEG data
integrity.

Electrode bridging varied significantly between datasets. It is un-
clear if certain acquisition parameters or specific recording charac-
teristics are more likely to result in electrode bridges (e.g., EEG
recording equipment, number and proximity of recording sites, hair
properties, technician skills, etc.). Although these questions are be-
yond the scope of this report, it should be noted that the greatest
montage density in this report consisted of only 64 electrodes. Find-
ings by Greischar et al. (2004) and Tenke and Kayser (2001) suggest
that most bridging is probably due to the spreading of electrolyte
along the scalp to adjacent electrodes. The use of high-density mon-
tages (128 or more scalp locations), with correspondingly smaller
inter-electrode distances, may therefore increase the incidence of
electrical bridging. However, this is an empirical issue and could
be laid to rest by applying the proposed algorithm to EEG data ac-
quired from montages of various densities.

The algorithm used in this report may be overly conservative, as
a few sessions were found with frequency distributions that fea-
tured not only a near-zero peak but also a second peak with an



Table 2
Electrode bridging by dataset.

Dataset A32 B64 C22 D32 E54 Sum

Total number of sessions 31 109 18 32 13 203
Number of sessions with at least one pair of bridged electrodes (%) 27 (87) 82 (75) 0 (0) 0 (0) 1 (8) 110 (54)
Mean percentage of bridged electrodes in EEG montage 18 10 0 0 0.3 8

Table 3
Similarity of identified bridges after varying recording and segmenting parameters.

Comparison to benchmark Similarity index

Mean SD

Sample rate (samples/s)
64 99.9 1.18

Number of epochs
30 99.0 3.84
120 99.6 2.31
480 99.8 1.24

Epoch length (seconds)
0.5 99.8 1.30
1 99.8 1.24
2 99.7 1.62

Raw data
Unfiltered 98.7 6.86
Low-pass 99.7 1.53
Band-pass 100.0 0.24
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ED 6 10. Although formal analyses of these second peaks were not
performed, these peaks may reflect additional electrodes with a
more tenuous electrical bridge (i.e., electrodes with a strong elec-
trical bridge form the first peak and electrodes that are more
weakly or variably bridged together form the second peak). Ignor-
ing these second peaks may therefore risk some lesser distortion of
EEG topographies, but further research is needed to address this
issue.

Our evaluation of the bridge detection algorithm with publicly-
available datasets strongly suggests that it may be readily applied
to EEG acquired with any recording system. Given the unexpected
prevalence of bridging detected across the samples selected for this
study, it is likely that bridging represents a pervasive problem in
data contributing to the EEG literature. This high incidence is coun-
terintuitive for any published dataset, and underscores a problem
that is largely unrecognized by the field. Rather than risk the noise
that results from unnecessarily high scalp impedances, many
experimenters will over-apply electrolyte. This practice is rein-
forced when the resulting data (i.e., individual waveforms) are of
sufficient quality to yield publishable averages. In contrast, elec-
trode bridging is nearly impossible to intuitively recognize in con-
tinuous, epoched, or averaged data, even with close inspection
(e.g., Fig. 1). Unfortunately, undetected bridged electrodes degrade
the quality and precision of an EEG topography in a way that coun-
ters the trend toward higher density montages. In fact, variability
in the size and consistency of the electrolyte interface may itself
have topographic implications, even in the absence of identified
bridges (Greischar et al., 2004). On the other hand, the prevalence
of electrode bridges in low-density montages may constitute an
even greater distortion of the EEG topography.

The proposed approach thereby provides an essential tool to
help recover the topographic precision of data to a caliber required
for the extrapolation to dural or intracranial neuronal generator
patterns, or even scalp surface Laplacian (current source density)
techniques (e.g., Tenke and Kayser, 2012). It is therefore recom-
mended that systematic screening for electrode bridging become
a standard part of any EEG data analysis, for example, as regular
a practice as the detection (and reduction) of blink artifacts. Such
a safeguard would allow informed decisions to be made about
how to address any bridging. Affected data can be excluded (trials,
time interval, subjects) or replaced (e.g., interpolation), thereby
avoiding potential distortions of the data or other pitfalls. Even if
no electrode bridges were present in a given dataset, a routine
screening would provide certainty of their absence and thereby al-
low for greater confidence in any topographic analyses.
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